
F1 IFCOPYESD-TR-87-19!5

D 1, ering Institute

VAXELN Experimentation:
Programming a Real-Time
Periodic Task Dispatcher Using
VAXELN Ada 1.1

* Mark W. BOgr

November 19W

(0CDTIC
N~~l ELECTED

II< OC 2 4 IM
*D

*H

LEST~~S IDTAD~ A2 0 (39

Technical Report
CMU/SEI-87-TR-32

ESD-TR-87-1 95
November 1987

VAXELN Experimentation:
Programming a Real-Time Periodic

Task Dispatcher Using VAXELN Ada

Mark Borger
Ada Embedded Systems Testbed Project

Approved for public release.
Distribution unlimnited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEt Joint Program Office
ESDIXRS
Hanscom AFB, MA 0 1731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 0 1987 by the Software Engineering Institute.

This document is available through the Defense Technicai information Center. DTIC provides access to and transfer ofiscientific and technical information for DoD personnel, DOD contracton; and potential contractors, and other U.S.Government agency Personnel and tier contractors. To obtain a copy, please contact DTIC directly: Defense TechnicalInformation Goetter, Attn: FDRA. Cameron Station. Alexandria, VA 2230446145.
Copies of this document are also available trough the National Technical Iformation Services. For information onOrdering. plea"e contact NTIS drectfy: National Technical Inormation Services. U.S. Departet ofCmceSpringfield, VA 22161. te fCmwe
Adas a registered trademark of tje U.S. Government. Ada Joint Program Office. SD-Ada and VMX are registeredtrademarks Of Systems Designers plc. tfAcoVAX, MicroVMS. VAX. VAXEIN, and VMS are trademarks of DigitalEqIUIPment Corpoaton. VME is a trademark of Motorola M'arosystemns (trademiark pending)

Table of Contents

Executive Summary 1
1. Background 1
2. Scope 2

1. Real-Time Periodic Task Dispatcher 3
1.1. Motivation and Rationale 3
1.2. Top-Level Design 4

1.2.1. INS Data Types 4
1.2.2. Real-Time Clock Manager 4
1.2.3. Activation Queue Manager 5
1.2.4. Task Manager 5
1.2.5. Data and Control Flow 6

2. Real-Time Task Dispatcher Prototyping 9
2.1. Schedulability Analysis 9
2.2. Periodic Task Dispatching Alternatives 10

2.2.1. General Purpose Queue Management 11
2.2.2. Static Queue Management 11

3. Results 13
3.1. Dispatching Techniques 13
3.2. Synchronization Mechanisms 16
3.3. Technical Observations 17

References 19

Appendix A. INS Executive: Ada Source Code for SOM/Rendezvous 21
Dispatcher

A.a. KWVRegisterDefinitions Package Specification 21
A.b. KWVRegisterDefinitions Package Body 22
A.c. Real-Time Clock Manager Package Specification 23
A.d. Real-Time Clock Manager Package Body 25
A.e. INS Data Types Package Specification 35
A.f. Clock Interrupt Service Routine 36
A.g. Runtime BIT Package Specification 36
A.h. Runtime BIT Package Body 37
A.i. Motion Simulator Package Specification 38
A.j. Motion Simulator Package Body 38
A.k. Comms Handler Package Specification 39
A.I. Comms Handler Package Body 39
A.m. Screen Area Handler Package Specification 40
A.n. Screen Area Handler Package Specification 40
A.o. Activation Queue Manager Package Specification 40
A.p. Activation Queue Manager Package Body 41

CMU/SEI-87-TR-32 I

A.q. Task Manager Package Specification 43
A.r. Task Manager Package Body 44
A.s. Main Program 50

Iwo

II CMU/SEI-87-TR-32

List of Figures
Figure 1-1: INS Executive Subsystem - Package Dependencies 4
Figure 1-2: INS Executive Subsystem - Data and Control Flow Diagram 7
Figure 3-1: General/Rendezvous and Static/Rendezvous Scaled CPU 15

Utilization
Figure 3-2: General/Semaphore and Static/Semaphore Scaled CPU 15

Utilization
Figure 3-3: Rendezvous Versus Semaphore Comparison 16

Acoesslon For

NTIS GRA&I Y
DTIC TAB El
Unannou eed EJ
Just floatlon

Distribution/___________i-
Avalisbility Codes

Avail and/or
t Special

CMU/SEI-87-TR-32 Ill

iv CMU/SEI-87-TR3

List of Tables
Table 2-1: VAXELN Real-Time Measurements 9
Table 2-2: INS Periodic Task Set - Execution Time and CPU Utilization 10

Estimates
Table 3-1: General/Rendezvous and Static/Rendezvous Estimated CPU

Utilization
Table 3-2: General/Semaphore and Static/Semaphore Estimated CPU 14

Utilization
Table 3-3: Estimated CPU Utilizations and Schedulability Thresholds 16

CMUISEI-87-TR-32

a~*

VAXELI Experimentation: Programming a Real-Time
Periodi Task Dispatcher Using VAXELN Ada 1.1

AbMistracl. The purpose of this paper is to provide the reader with some technical
inormaton and observations, Ada source code, and measurement results based on
expeimentation with respect to developing a real-time periodic task dispatcher in Ada.
The results presrted here are specilic to a pVAX-IINAXELN 2.3 target system, the
VAXELN 1.1 Ada compiler, and a KWV1 1 -C programmable real-time clock. Specifi-
cally. these results provide answers to the question: How can one achieve the effect of
schedulng a set of perlodic-Ada tasks when the runtime frequency of some of the
kidiWidual tasks is Aess than the cdock cycde frequency supported by an Ada runtime
implementation?

r Executive Summary

1. Background
The Ada Embedded Systems Testbed Project's investigative approach promotes three typical
stages to developing real-time systems: benchmarking; experimentation and prototyping; and de-
signing, coding, and testing an application. To study the performance characteristics of Ada
cross-compilers, we are unning several existing benchmark test suites to time)
space, and capacity constraints associated with individual Ada features. To minimize program-
ming risks such as those inherent in developing low-level device interfaces, we are performing
evaluation experiments (i.e., prototyping) to explore programming alternatives available to an
application developer, implementation strategies employed by a compiler vendor, and real-time
ramifications with respect to using Ada in these high risk areas. We are also designing and
implementing an application that is characteristic of real-time embedded systems. This appli-
cation system provides a context for using the experiment and benchmark results and will be the
primary vehicle for investigating the portability of Ada code across several target processors.

The intent of this experimentation was to investigate various programming alternatives available
to an application developer for writing a real-time periodic task dispatcher in Ada. The approach
was to design and prototype alternative versions of a task dispatcher for the Inertial Navigation
System (INS) [INS Specification 87, INSP TLDD 87] simulator being developed by the project to
support a detailed schedulability analysis of the INS periodic task set.

'In this contex a periodl scheduled task set implies What each task in the set is executed at its own fixed
frequency. A perodic task dispatcher is a software component that schedules the individual tasks at ther implied runtame
frequent.

CMU/SEI-87-TR-32

2. Scope
For this particular target configuration and cross-compiler (VAXELN 2.3NAXELN Ada 1.1). a total
of four different (protolype) periodic task dispatchers were developed. Two different periodic task
dispatching approaches were used; for each of these, two different synchronization techniques
were used, namely, the Ada rendezvous and the VAXELN semaphore. This paper first discusses
the rationale for needing a real-time periodic task dispatcher and then presents the high-level
design from which the prototypes were developed. Next, the task dispatcher prototypes are
described in some detail, as Is the experimentation approach used to test their feasibility. Finally,
the empirical results are presented and analyzed, and relevant technical observations are pro-
vided.

2 CMU/SEI-87-TR-32

1. Real-Time Periodic Task Dispatcher
The Ada tasking mechanism provides the real-time application pogrammer with a facility to do
mulli-tasking. The decision to use Ada muli-tasking depends mainly on the scheduling require-
menits of the application. Real-time applications can be classified into three categories by their
inherent scheduling requirements [MacLaren 80: (1) purely periodic scheduling with no aperiodic
events. (2) primarily cyclic with some aperiodic events and possible variations in computing loads,
and (3) event-drIven (totally apedodic) and no periodic scheduling. Common practice has been to
employ a cyclic executive for all three levels, but it has been shown that the benefits of Ada
multi-tasking (e.g., supports aperiodic events, monitors intertask dependencies, controls task in-
teraction, and supports cyclic processing at arbitrary frequencies) can be realized with applica-
tions having scheduling requirements falling the latter two categories (MacLaren 80). With Ada
multi-tasking, the runtime is responsible for scheduling tasks, whereas with a cyclic executive the
application programmer controls the scheduling.

The Inertial Navigation System simulator must not only schedule2 periodic tasks for execution,
but also must handle the scheduling of aperiodic tasks.3 Its scheduling requirements therefore
fall into the second category above. As such, we decided to use Ada tasking wherever possible
to meet the application's scheduling requirements. This chapter first motivates the need for a
real-time periodic task dispatcher executing on top of the Ada runtime system. It then presents a
high-level description of the design of the INS executive subsystem that supports the scheduling
of the INS task set via the real-time task dispatcher.

1.1. Motivation and Rationale

One of the most Important concerns for developing a real-time application is satisfying timing
requirements. The INS simulator has certain real-time requirements that it must meet:

1. scheduling periodic tasks at frequencies of 400, 25, 16, and 1 Hz;

2. providing a task time-out service that must notify waiting tasks after expiry of 10.24
ms; and

3. supporting a time stamp mechanism at a granularity of 2.56 ms.

The delay statement in Ada was designed to aid in satisfying timing deadlines. However, vali-
dated Ada compilers to date have implemented the semantics of this statement by only ensuring
that the task that executes it will be suspended from further execution for at least the duration
specified, rather than supporting a guaranteed upper bound on the duration of time a task's
execution will be suspended. To further aggravate this problem, the validated Ada compilers
investigated to date have at best supported a 10 ms clock cycle (SYSTEM.TICK). These issues

I in combination with the INS simulator's requirement for a fie-grained (2.56 ms) notion of time
serve as the rationale for using a programmable real-time clock and a real-time task dispatcher
on top of the Ada runtiie system for supporting periodic task scheduling.

2 ft use di Im l disdie" loosely in Iti report to mom that m Ada task has been mare reedy to be sdxdued
by the Ada rnmie task d'duler._

For example, tie INS oommunication subsystem irregularly requests tine-outs through an aperiodic task

CMUISEI-87-TR-32 3

1.2. Top-Level Design
This section provides an overview of the INS simulator's executive subsystem design, which
serves as a prototype of the INS simulator's real-time task dispatcher. This subsystem consists
of three major components, namely a Real-Time Clock Manager, an Activation Queue Manager,
and a Task Manager, each of which is represented by one Ada package as shown in Figure 1-1.

INS Data
Types

Activation Task Real-Time
QuieueMaaeClc

Manager Manager

Figure 1-1: INS Executive Subsystem - Package Dependencies

The rounded, unshaded rectangles in the figure represent Ada package specifications, whereas
the shaded one represents package bodies; the arrows indicate the dependency relationships (an
arrow from A to B implies that A depends on B). The three packages at the bottom of the
diagram are a subset of the packages that the executive imports from other INS subsystems to
gain visibility of the periodic tasks that are part of the task set. The remaining packages con-
stitute the executive subsystem whose responsibilities include scheduling the periodic task set
and servicing time-out requests and cancellations. The following sections briefly describe each of
these packages.

1.2.1. INS Data Types
The INS Data Types package (see Appendix A.e) of the INS executive subsystem provides the
common data types used by the other packages. Specifically, it defines a data type for represent-
ing the executive's notion of time (i.e., the number of ticks since program invocation).

1.2.2. Real-Time Clock Manager
The Real-Time Clock Manager component of the INS executive subsystem provides a set of Ada
interfaces to a KWV1 1-C programmable real-time clock [LSI-1 1 Users 861. This component con-
sists of one Ada package (see Appendix A.a - A.d1 that provides the necessary data types,
procedures, functions, and exceptions for interfacing to multiple KWV1 1-C real-time clocks via
Ada application code [Clock TR 871. These routines support all four modes of the clock's opera-
tion' (Single Interval Interrupt, Repeated Interval Interrupts, External Event Timing Zero Base, and
External Event Timing Cumulative) in addition to its five different internal clock rates (1 MHz, 100

4 CMU/SEI-87-TR-32

KHz, 10 KHz, 1 KHz, 100 Hz). In addition to providing a mechanism for establishing a link
between clock Interrupts and an Interrupt Service Routine (ISR), the Real-Tume Clock Manager
supports typical programmable clock operations such as setting the clock's operation mode (e.g.,
repeated interrupts), setting the clock frequency, enabling and disabling clock interrupts, and
programming the clock interrupt period.

1.2.3. Activation Queue Manager
The Activation Queue Manager component of the INS executive subsystem implements a single
time and priority ordered task activation queue. This component is represented in the design as
one package named Activation_Queue_Manager. The package specification (see Appendix
A.o, A.p) exports the necessary data types, procedures, and exceptions for accessing the ele-
ments of the time-priority ordered task activation queue. Specifically, the package specification
defines a data type that represents a task activation record (AR) so that the users of this package
can build such data objects. An AR contains the task's name, activation period, activation time,
execution priority, and its activation mode (e.g., periodic, aperiodic). The Activation Queue Man-
ager supports typical queue operations such as inserting, fetching, deleting, and re-inserting for
activation records via the exported procedural interfaces.

The implementation details of the task activation queue are hidden in the package body. The
prototyping described in Chapter 2 presents the details of two different implementations of the
activation queue and its corresponding operations.

1.2.4. Task Manager
The Task Manager component of the INS executive subsystem provides a centralized task name
service for the entire INS simulator program in addition to supporting the operations of enabling,
disabling, and querying the schedulability status (e.g., enabled for activation) of periodic INS
tasks. It is represented in the design as one package named TaskManager(see Appendix A.q,
A.r). The Task Manager also provides a mechanism for registering and canceling time-out re-
quests from the communications subsystem. The package specification exports an enumeration
type that contains an enumeration literal for each task in the INS task set. The package exports
subprograms to support the aforementioned operations on any of these tasks. Furthermore, the
package specification exports a procedure for initializing the INS task activation queue and one
for initializing the real-time clock and activating the Dispatcher task. Initializing the activation
queue involves inserting activation records for each of the pre-defined periodic tasks within the
INS. The process of programming the real-time clock involves setting up the mode, rate, and
Interrupt Service Routine. Finally, the Task Manager implements a real-time periodic task dis-
patcher on top of the task services provided by the Ada runtime using interrupts generated from a
real-time programmable clock.

To implement this task dispatcher, specific knowledge of the mapping between the task ID
enumeration literals and the actual Ada task names within the INS simulator program is located in
the package body. The Dispatcher task is a high priority Ada task within the INS simulator
program. Its body has a loop that attempts to dispatch a new task at every clock interrupt. Inside
the loop it first waits for the signal from the clock ISR indicating that an interrupt just occurred. It
then updates its notion of time, namely the current tick number, and then requests, from the
Activation_Queue_Manager, an AR of a task that should be scheduled at the current time.

CMU/SEI-87-TR-32 5

Finally, then, based on the activation mode of the task represented by the returned AR, it takes
appropriate action.

1.2.5. Data and Control Flow
A brief description of the data and control flow of the INS executive subsystem follows. This
discussion is relative to the data and control diagram appearing in Figure 1-2 and assumes a
VAXELN target system.

Step Description ;Z
1 Initialize the activation queue. Initializing the activation queue involves creating

new activation records for each of the pre-defined periodic tasks within the INS
and inserting those ARs into the activation queue. Depending on the activation
queue management approach, either an index for the just-inserted AR is returned
or 1he next tick number at which time a task needs to be scheduled is returned.

2 Program the real-time clock's settings. The process of programming the real-time
clock involves setting up the mode, rate, and Interrupt Service Routine. The asso-
ciation between the hardware interrupt and the Ada ISR must be established
through a VAXELN service (CREATEDEVICE); this kernel routine returns a de-
vice object tag back to the caller; as can be seen in the data/control diagram, this
information is passed back to the Activate Dispatcher subprogram.

3 Activate the task dispatcher and instruct the real-time clock to begin generating
interrupts. Prior to starting the real-time clock, the Dispatchertask is activated via
an Ada rendezvous from the Activate Dispatcher subprogram. The data passed
to the Dispatcher is precisely the device object returned from the
CREATE DEVICE kernel service. The Dispatcher uses this data to properly syn-
chronize with the clock interrupts. Upon activation of the Dispatcher, the real-
time clock is started.

n A real-time clock interrupt occurs. The .VAXELN kernel transfers control to the ISR
associated with the clock interrupt.

n+1 The ISR signals the Dispatcher using the VAXELN Signal/Wait mechanism.
n+2 The Dispatcher fetches the next AR from the activation queue.
n+3 The Dispatcher, if necessary, activates the appropriate task for execution.

In Figure 1-2, rounded rectangles represent packages, rectangles correspond to individual sub-
programs in the body of the Task Manager, and parallelograms are Ada tasks. Note: The
Dispatchertask is in the body of the TaskManagerpackage.

A sample main program that initiates the executive subsystem is shown below.
with Task_Manager;

procedure INS is
begin

Task Kanagr. InitializeActvationQeue;
Task Manager. Activate Dispatcher;

end INS;

After this initiation sequence, the Dispatcher runs autonomously, being driven by the real-time
clock interrupts (step n) and continually performing steps n+l, n+2, and n+3.

6 CMU/SEI-87-TR-32

n Interrupt
G 0 Service Activation

RoutineQue

0anager Activation

RealTkneDispatcher

Manager linitializeActivationQueue

Figure 1-2: INS Executive Subsystem - Data and Control Flow Diagram

CMU/SEI-87-TR-32 7

B CMUISEI-87-TR-32

2. Real-Time Task Dispatcher Prototyping
To lemn the risks of irpAnlengk the INS simulator using Ada tasks, alternative prototype
versions of the real-time periodic task dispatcher were developed to assess the schedulabillty of
the INS periodic task set based on estimates of task execution times. This chapter presents the
results of tIs system modeing and analysis.

2.1. Schedulability Analysis
To assess the schedulability of the INS periodic task set, the following four-step approach was
taken.

Step 1 - Make real-time measurements
Prior to embarking on the modeling of the INS simulator tasking structure, it was essential to
understand the internal operation of the underlying VAXELN [VAXELN Release 86, VAXELN
Users 851 runtime executive. Key real-time measurements shown in Table 2-1 were either em-
pirically obtained or taken from the VAXELN performance documentation.

4 Event Time

Interrupt latency (VAXELN manual) 33 jisec

Context switch (VAXELN manual) 150 pIsec

VAXELN signallwait (empirical result, no process contention) 285 lisec

* Ada rendezvous (empirical result) 1780 psec

Attitude and Heading calculations (empirical result) 450 psec

Table 2-1: VAXELN Real-Time Measurements

Step 2 - Estimate CPU utilization for task set
As a second step in the schedulability analysis, runtime estimates for each INS periodic task were
made; execution time and CPU utilization estimates for the INS task set appear in Table 2-2. The
execution time of the Attitude Updater was empirically measured to be 0.45 ms, whereas the
runtime for the remaining periodic tasks was estimated. The overhead associated with each
periodic task represents the context-switching time for entering and leaving the task (2 context
switches = 0.30 ms); for the Aftitude Updater the overhead represents the sum of interrupt
latency and a context switch to the Dispatcher (0.03 + 0.15 = 0.18 ms). The synchronization
times associated with each periodic task is 1.48 ms, which is the measured Ada rendezvous
times less 0.30 ms for context switches; the 0.29 ms of synchronization time for the Attitude
Updater corresponds to the VAXELN Signal/Waittime (see Table 2-1). If the analysis is correct,
the implication is that only 15% of CPU time is available for the task dispatcher and background
processing.

CMU/SEI-87-TR-32

IEcun Ovenmad Synch Ttal
Task__ _ F__ esum E v Sfnh UtIlzation Utilization Utilization Utilization(W |n (Mal (M61 M1 M'. M, M~

A111100% Jk 400 0.46 .4 0.. 11.0 7.S2 11.40 36.72
Vd- 2S 4 0.30 1.46 10.00 0.75 3.70 14.45

6 8 1 I 10 0.30 1.46 16.00 940 2.37 16.85

1 20 0.30 1.48 2.00 0,0l3 0.15 2.18
8u 1 100 0).30 1.!48 10.00 0.03l 0.15 1.16

1ulrl 51 0 .30 1.49 0.50 0.03 0.15 a,6

- 0.,i 25 0.30 1.46 2.00 0 .02 0.12 2.14

164.45 1.06 9.17 U .-0 8.66 18.03 65.19

Table 2-2: INS Periodic Task Set - Execution Time and CPU Utilization Estimates

Step 3 - Build INS tasking model
The next step of the analysis was the development of a skeletal INS tasking model. The control
logic of each periodic task was virtually the same: an autonomous loop containing first a
synchronization point at the top followed by code to perform the task's computation. For the sake
of modeling, the computational load of each periodic task was represented using a busy wait
mechanism whose variability was between 5 and 10 percent. For instance, the Velocity Updater
task was instrumented with a 4 ms busy wait (see Table 2-2). This busy wait was implemented
using an external subprogram call, and its basic unit of time measure was 100 ;Ls; the routine was
independently tested to be accurate to within 10%. To achieve the effect of varying the percent-
age of free CPU time, the duration of all of these busy waits was scalable using a global load
factor. For example, a global load factor of 0.75 is equivalent to the duration of each task's busy
wait being 75% of its estimated value (0.75 4 ms = 3 ms for the Velocity Updater); a load factor
of 1.25 increases the duration of the waits to 125% of their estimated values. -

Step 4 - Monitor missed deadlines
The final step of the analysis was to vary the global load factor and monitor the model behavior
with respect to missed deadlines. For each dispatching technique under investigation, the global
load factor was continually increased by 0.05 (its fixed point delta) until a task deadline was
missed. This critical load factor value, termed the schedulability threshold, was empirically
determined for each dispatching aftemative implemented. These periodic task dispatching
prototypes are described in the next section.

2.2. Periodic Task Dispatching Alternatives

Given the high level design abstraction for the Activation Queue Manager, described in Section
1.2.3, two different queue management approaches were implemented, each associated with its
own periodic task dispatcher. For each of these two different task dispatching prototypes, two
different synchronization techniques were employed, namely the Ada rendezvous and the
VAXELN semaphore. This section describes the two dispatching approaches, hereafter referred
to as the general-purpose queue management (GPOM) and the static queue management (SOM)
approaches.

1E

10 CMU/SEI-87-TR-32

J

2.2.1. General Purpose Queue Management
In the general-purpose queue management approach, the ordered activation queue is imple-
mented as an aray of indices into a table of existing activation records. Thus, the manipulation
(e.g.. insertion, deletion) of the ARs in the queue essentially involves the proper maintenance of
these indices and the AR table entries. For instance. Inserting a new AR into the queue involves
creating a new entry in the AR table, locating the proper queue position of this new AR based on
its activation time and priority, and finally inserting its AR table Index at the proper queue position
while at the same time relocating any other queue elements affected by the insertion. Deletion of
a specific element is similar In logic to insertion; however, at present, no mechanism is in place
for reclaiming space in the AR table when APs are deleted. Fetching an AR, of course, removes
the element from the head of the ordered queue.

In this implementation, the task Dispatcher calls the Activation Queue Manager (AQM) every
* clock tick (2.56 ms). passing it the current time (i.e.. tick number). The AQM compares this time

to the activation time of the AR at the head of the queue (in this implementation, the first array
element); if the values are equal, then the first AR is returned; otherwise, a null AR is returned.
When a non-null AR is returned (i.e., taken off the queue), its activation mode value is checked; if
it represents a periodic task, a new activation time is computed, and the AR gets updated within
the table and is re-inserted into the queue. It is possible that more than one AR meets the
activation time criteria specified in the Get_Activation_Recoad call; in such cases the first AR is
always returned since it is guaranteed to have the highest execution priority; the other qualifying
ARs have their activation times incremented by 1 tick and are re-inserted into the queue; how-
ever, the original schedule for the delayed tasks is maintained.

0 2.2.2. Static Queue Management
In the static queue management approach, the activation queue is implemented as a statically
sized array of activation records. The ARs are never moved from their initial position in the array,
and one special array element is reserved for the AR of the Communications Controller task,
which is called when a time-out has expired. In the purist sense, the data structure is not man-
aged as an ordered queue, but rather as an array of elements, of which one is always marked as
the next AR to be returned upon a fetch operation. In this scheme, the AQM maintains infor-
mation regarding the next task to be scheduled and when to schedule it by performing a linear
search of the array upon each insert and fetch operation. A benefit to this approach is that the
need for special processing to resolve scheduling conflicts is obviated by the linear searching
upon each fetch and insert operation, since the search implicitly resolves conflicts.

In this implementation, the task, Dispatcher calls the Activation Queue Manager only at the times
when tasks are scheduled to be activated. Upon each insert (e.g., time-out request) and fetch
(e.g., get next AR) operation, the AOM returns the next activation time. When an AR is returned
(i.e., taken off the queue) to the Dispatcher, its activation mode value is checked by the AOM; if
it represents a periodic task, a new activation time is computed, and the AR gets re-inserted into
the queue. To handle scheduling conflicts easily, the Dispatcher fetches ARs from the AQM
when the current time is either equal to (no conflicts) or past (a conflict has occurred) that time
specified by the ACM as the next time to schedule.

CMU/SEI-87-TR-32 11

12 CMU/SEI-87-TR-32

3. Results
Enfal results produced from the schedulabillity analysis are presented in this chapter from two
different perspectives. First, a comparison of the two queue management approaches and their
associated task dispatching prototypes is made by analyzing their effects on total CPU utilization
when the synchronization mechanism is held fixed. Second, an analysis of the perdormance .,
ramifications of the two synchronization techniques, namely the Ada rendezvous and the
VAXELN semaphore, is done with respect to total CPU utilization. Finally, relevant technical
observations are provided.

3.1. Dispatching Techniques
Tables 3-1 and 3-2 show that the calculations performed by the Attitude Updater require 18%
CPU utilization and that the elapsed cycle time for the general-purpose queue management
(GPOM) task dispatcher is 0.10 ms (0.32 - 0.22 - 0.10 ms) slower than the looping time of the
static queue management (SOM) task dispatcher. These Dispatcher cycle times measure the
elapsed time (from when the Dispatcher is signaled by the ISR) of resetting the clock's interrupt
flag, updating the Dispatchers notion of time, and fetching the next AR. However, this cycle-
time measurement does not include the elapsed time for activating the next periodic task to be
scheduled since this time has already been accounted for as the synchronization overhead asso-
ciated with each periodic task. Note: These cycle times were empirically measured using a
programmable real-time clock.

Given the minor difference (0.10 ms) between the GPQM and SOM elapsed dispatching loop
times, it is not surprising to find that their effective CPU utilization percentages differ by only 4%
(12.8 - 8.8 - 4.0 [Tables 3-1 and 3-2D regardless of the synchronization mechanism employed to
schedule the periodic tasks. By adding in the corresponding context switching overhead (6%),
the total CPU utilization percentage for each dispatching technique can be obtained. Since only
one context switch, namely the one necessary to switch from the Dispatcher to another process
context, is recorded as dispatching overhead for either approach, the relative difference of their
total CPU utilization remains 4%. For instance, the difference in total CPU utilization percentage
between the GPOM and SOM techniques using VAXELN semaphores for synchronization is 4%
(97 - 93 - 4% [Table 3-2]). Comparing the Dispatcher segments of the two columns labeled
"Estimate (100%)" in either Figure 3-1 or Figure 3-2 illustrates this small difference in total CPU
utilization percentages attributable to the change in dispatching methods.

The imputation of the synchronization and context switching overhead for the individual periodic
tasks depends on the synchronization mechanism in use. In the case of Ada rendezvous, 1.78
Ms (2 context switches + synchronization time - 2 * 0.15 + 1.48 - 1.78 ms) of total synchroniza-
tion overhead is charged to each periodic task; for VAXELN semaphores, only the signaling time
of 0.28 ms Is associated with the individual tasks since a context switch out the dispatcher has
already been counted.

CMU/SEI-87-TR-32 13

140 046 010 6 .17 10 6.66 16.0 6

1 6 4 03 1.48 WOO5 1.66 .. i2.. .. 14.

TAlbld Sanda Ieea~rtevu and Sttc/edevu Esimte CPU8 Utilization47

ft isclarfom inse gFgr -10 that the8 estiate CPU3 utiiza5 asoitdwihbt0h

tiois eual rexed 00/ obiosl 0.n these cases the 2 0INS takstwudntb

n Tu e 1 exrsenerms nof s n pece taofthRezmos theed tasks etiatedn CP

tilnits. Fqaor expeds a 0% s oed biosy i threo e ofa8%efo the INS task set implitht the

tasks are schedulable (i.e., will not miss deadlines) for only up to, but not including, a periodic
task set CPU utilization level that is 82/6 of the original estimate (see Tables 3-1 and 3-2).

PosiExcutio Lyariee 0.8c T5000 0o820t00a00l

____________ ___a 400_ 0.45 0.18 1.9 58.50 7.32 12.65 37

400t ~ Is 10 0.00 12.60 6.00 0.00 04 19

______ar 1 5 .0 0.33 1. 7.30 10.02 1.65 17

Poito Uod Ool 25 J. 0.00 6.9 .60 6.00 .02 ~ 2.i...
________s 0. 1.07 68.50 1.32 12.65 8

Table 3-2: General/Semnaphore and Static/Semaphore Estimated CPU Utilization

4Sinoe tasks wnder VAXEIN Ada are inplemnled as separate processes, the process switching times in the table
coincide with Ada task switches

14 CMU/SEI-87-TRZ-32

120.00

100.00_

* Periodic Tasks
60.00 - Dispatcher

CPU 60.00 U Synchronization

Utilization
0; Context Switch

40.00 U Base Calculations

20.00

0.00 -GPOM GPOM/R SOM/R S M/R

Estimate Scaled Estimate Scaled
(100%) (75%) (100%) (85%)

Figure 3-1: General/Rendezvous and Static/Rendezvous Scaled CPU Utilization

Since the amount of CPU utilization consumed by the periodic tasks varies directly with the value
of the global load factor, the corresponding "Periodic Tasks" segments of the 'Estimate" columns
in Figures 3-1 and 3-2 must be adjusted so that the entire CPU utilization is below 100%, thus

making the task set theoretically schedulable.

100.00

90.00

80.00

70.00 - Periodic Tasks

Percent 60.00- 0 Dispatcher

CPU 50.00 M Synchronization
Utilization 40.00

E3 Context Switch

30.00 - Base Calculations

20.00

10.00

0.00
GPOIWS GPQtWS SOMS SOMS
Estimate Scaled Estimate Scaled
(100%) (100%) (100%) (110%)

Figure 3-2: General/Semaphore and Static/Semaphore Scaled CPU Utilization

CMU/SEI-87-TR-32 15

For example, the schedulablity threshold for the GPOM Dispatcher using Ada rendezvous for
task synchronization is 75%. One can observe from the first two columns of the bar chart in
Figure 3-1 that the *Periodic Task segment shrinks to 75% of its original size to reach a total
CPU utilization level under 100%. The schedulablity thresholds can be read from Figures 3-1
and 3-2 and are summarized in Table 3-3.

91110 ~ rtO _ M tctwa Peiodic Total khodulabilit,
QBWI&M "i I lth Isynch Eamtion ITasM Utilization I fWeshld

16.00 14.66 10.03 12.80 40.$ 104 75
IGOMEdmk I10.00 I13.16 I12.65 I12.0 40.50 9 7 I100

1.0 14.61 1.3 88 406 100 a
1.0 -13.1 126 6.0 -4.S 93 110

Table 3-3: Estimated CPU Utilizations and Schedulability Thresholds

Interpretation of the scheduability threshold data in Table 3-3 indicates that, assuming the same
synchronization mechanism, changing from the GPOM Dispatcher to the SOM Dispatcher
yields a 10% (85 - 75 - 110 - 100 - 10%) increase in the schedulability threshold.

120.00

100.00-

[Periodic Tasks80.00- -

Percent 0. Dispatcher

CPU 60.00 - U Synchronization
Utilization 0 Context Switch

40.00 4 Base Calculations

20.00-

0.00A
GPOMR GPOS SOM/R SOM/S
Estimate Estimate Estimate Estimate

Figure 3-3: Rendezvous Versus Semaphore Comparison

3.2. Synchronization Mechanisms

The difference in total CPU utilization (computed from the data in Tables 3-1 and 3-2) when
varying the synchronization mechanism used by the Dispatcher is 7%. Specifically, for the
GPOM Dispatcher, a change in its synchronization mechanism from the Ada rendezvous to a
VAXELN semaphore results in a 7% (104 - 97 - 7o) savings in CPU utilization; for the SOM
Dispatcher, this savings is equal to 7% (100 - 93 - 7%). This implies that using VAXELN
semaphores for task synchronization uses roughly 7% less CPU time than Ada rendezvous tor
this real-time periodic task dispatcher application.

Since the (estimated) execution times of both the INS simulator's base calculations and periodic

16 CMU/SEI-87-TR-32

tasks are constant, Table 3-3 can be used to Illustrate the implications of the synchronization
mechanism employed for scheduling the periodic tasks on total CPU. The bar chart (generated
from this data) In Figure 3-3 clearly Ilustrates the pervasive effect of the Ada rendezvous on the
percent of context switch, synchronization, and dispatching CPU utilization.

Finally, interpretation of the schedulability threshold data in Table 3-3 indicates that, assuming the
same dispatching approach is being used, a 25% (100 - 75 - 110 - 85 - 25%) increase in the
schedulability threshold results I the synchronization mechanism is changed from the Ada ren-
dezvous to a VAXELN semaphore. Furthermore, a 35% improvement in the schedulability
threshold is obtained when changing from the GPOM Dispatcher and the Ada rendezvous for
synchronization to the SOM and VAXELN semaphores.

3.3. Technical Observations

The total estimated CPU utilization for the Interrupt Service Routine and the periodic task, without
including the empirical results for the Dispatchet's utilization, is quite high. In the case of using
Ada rendezvous for synchronization, it is 85%, and similarly for VAXELN semaphores, it totals
78%. It is clear from the tables in Tables 3-1 and 3-2 that a savings of 11% CPU utilization would
be gained if the synchronization between the ISR and the Dispatcher could be eliminated. Quite
simply this could be done by moving Dispatcher responsibilities into the ISR. In practice, how-
ever, this was not possible since numerous VAXELN Ada ISR restrictions limited the number of
Dispatcher implementation alternatives. These ISR restrictions disallow tasking operations,
input/output operations, and accessing variables not in the immediate scope of the ISR, and
strongly recommend against making subprogram calls external to the ISR.

The empirical results illustrate the pervasive effect of the Ada rendezvous on the schedulability of
the INS task set. Using the Ada rendezvous for synchronizing between the Dispatcher and the
periodic tasks rather than VAXELN semaphores, regardless of the dispatching technique
employed, results in an increase in total CPU utilization of 7%. Furthermore, for both dispatching
methods implemented, given the original execution time estimates for the INS periodic tasks,
using the Ada rendezvous as the synchronization mechanism results in missed task deadlines
Only when these estimates are scaled by 75% and 85% for the GPQM and SQM dispatching
approaches, respectively, does the task set become schedulable assuming Ada rendezvous for
task synchronization.

Interpretation of the schedulablity threshold data in Table 3-3 further demonstrates the impact of
the Ada rendezvous on the task set schedulability. The empirical results show that, assuming the
same dispatching approach is being used, a 25% increase in the schedulability threshold results
if the synchronization mechanism is changed from the Ada rendezvous to a VAXELN semaphore;
moreover, a 35% improvement in the schedulability threshold is obtained when changing from the
GPOM Dispatcher and the Ada rendezvous for synchronization to the SQM and VAXELN
semaphores.

Based on real-time scheduling theory, the optimal rate-monotonic scheduling algorithm [Lui 73]
guarantees schedulability of the INS task set for a processor utilization below 70% since the
individual periodic tasks priorities are assigned in direct proportion to their execution frequencies.

CMU/SEI-87-TR-32 17

However, since the INS task set CPU utilization is greater than 70%, another schedulability test
based on the rate-monotonic algorithm, namely task-lumping [Sha 871, was necessary to cal-

culate the theoretically expected schedulability thresholds. The schedulability thresholds deter-
mined empirically were consistent with those computed theoretically. For example, given the
original execution time estimates for the INS periodic tasks, the SOM dispatching approach using
VAXELN semaphore for task synchronization yielded a total CPU utilization level of 93%. Fur-
thermore, it was found empirically that the task set was schedulable until the original time es-
timates of the periodic tasks were scaled by 1.1 or until the total CPU utilization level reached
97% (ISR + Scaled Periodic Tasks + Dispatcher . 37 + 1.1 * 41 + 15 - 97.1%). Similarly, solving

for the schedulability threshold using the task-lumping method results in an expected threshold
value of 1.12.

18 CMU/SEI-87-TR-32

References
[Clock TR 87] Borger, M.W.

VAXELN Experimentation: Programming a Real-Time Clock and Interrupt
Handling Using VAXELN Ada 1.1.

Technical Report CMU/SEI-87-TR-29, Software Engineering Institute, October,
1987.

[INS Specification 87]
Landherr, S.F., and Klein, M.H.
INS Behavioral Specification.
Technical Report CMU/SEI-87-TR-33, Software Engineering Institute, June,

1987.

[INSP TLDD 87] Klein, M.H., Landherr, S.F.
INS Simulator Program: Top-Level Design.
Technical Report CMU/SEI-87-TR-34, Software Engineering Institute, July,

1987.

[LSI-1 1 User's 86] LSI- 11 Analog System Users' Guide
Digital Equipment Corporation, Maynard, MA, 1986.

[Lui 73] Liu, C.L., Layland, J.W.
Scheduling Algorithms for Multi-programming in a Hard-Real-Time.
JACM 20(1):46-61, January, 1973.

[MacLaren 80] MacLaren, Lee.
Evolving Toward Ada in Real-Time Systems.
In Proceedings of the ACM-Sigplan Symposium on the Ada Programmng

Language. November, 1980.

[Sha 87 Sha, L., Lehoczky, J.P., and Rajkumar, R.
A Schedulability Test for Rate-Monotonic Priority Assignment.
Computer Science Department ART Project, Carnegie Mellon University, July,

1987

[VAXELN Release 86]
VAXELN Ada 1.1 Release Notes
Digital Equipment Corporation, Maynard, MA, 1986.

[VAXELN User's 85]
VAXELN User's Guide.
Digital Equipment Corporation, Maynard, MA, 1985.

CMU/SEI-87-TR-32 19

*- - - - -'" m l i ih l n I O a

20 CMU/SEI-87-TR-32

Appendix A: INS Executive: Ada Source Code for
SQM/Rendezvous Dispatcher

* A.a. KWV_.RegsterDefinitions Package Specification

-- - - -SU Ada boeddad Systems Project Prologue-

Qu Oit, sam R: itrDeiii package specification

* -- version 1.0
-- Author WoMrk W. borgar

-bate, created 20 rob 21U7
Ze Lst update 12 Mar 1907

S- oot Kochi"e VAu/VMS 4.5
-- Target Machine: VAXZLH 2.3

--------0---- ---------------------------

-- Abotract ThIis package specification provides the necessary
------------- data types to access the Control Status and Buffer
------------ Psgisae of a IOW11-C zeal-time prograsbl. clock.

-- - - - - - - - - - - - - Revision vistozy - - - - - - - - - - - - - -

-- Date Version Author Kiatory
-12 Mar 87 1.0 Mark W. Merger Added prologue

--- &nd of Prologue----------------------------

with SYSTEM; use SYSTEM;
with VAXEIERVICIS;

package 01V Register Definitions is

-- fl1VlI-C Control Status Register layout

type IMOV CSR 3.ECce is record
90 go oDOLEMI; -- start the counter
me : WI8GW 2: - mode of operation
rate :UWICED 2: - clock rate
int -ovf : ROLEM: -- interrupt on overflow
ovi flag :SOOZZAM; -counter overflow occurred
inaint stl :SOOLLhN: -- simulate firing of stl
.dat st2 : OOzzAW; -- simulate firing of st2
unint -o~c :ROOLAJ; -- simulate one, cy. of onc
dio SOOLEW; -- disable Internal oscillator
flag overrun : UCLEAH; -- true If ovf secure with avf-flag still got
*t;_qoepshlo ROOZAM: -assertion of st2_flag noes go hit
st2jnt_nable SOOLAW: -assertion of st2 -flag causes an Interrupt
.rt2 flag : ROLEA; -- start interrupt request fair st2

end record;

for W VCUR RZCORD use record at mod 2:
go at a range 0. .0,-
mode at0ran"el.-2;
rate at 0 range 3. .5;
Let_.,i at 0 ran"e4 6:6
oil flag at 0 range 7. .7;
msint stl at 0 Crge 0. .@:
uait"st at a Crnge S..$:
mint -*c at 0 range 10- 10;
-die at 0 range 11..11:
flag overrun, at 0 rane 12. .12;

CMU/SEI-87-TR-32 21

stZ-geapabl. at a zeag 12.-1.5;
st2 lrAt amable at 0 ca.. 14..14:
0%2-926 at 0 a. S . .15:

sad racsad;

fox OW COIL ISCONDm' use 14:

- ml-C 1uffer/Preoat Register layout

SubtypaeMU !3I is vm WIU cSEZK. W-Cam WR!P;

- Paord Itype conaining tha EIVIl-C' a COR sad Ruffer/?reeet "Lgater

typa =W-RUXT3Z= to record
CSR ElYCGR_330D -- ostrl/Ftatua register
SOR mm EMETYPR; -- buffar/prosot regiater

wnd record,
pragm PACK (EM _RZG1U'IKJ);

procedure Put CER (CSX :In WV CSaa Record;
Uagiste;-Addraes :In ADDRES2)

fuetion Got CUR (Ragisear-Addraea - n ADDRESS) return SMYCBR Rectord;

and WV AaexDefimit Ions:

A.b. KWVRegisterDefinitions Package Body

-------- n Ada added Systms Proeact Prologue ---------------

-- Unit nam RV E Register Definition& package body
-- 3artmant 6:PAOl
-- version 1.0
-Author :mark W. Dorger

-Data Created 23 Mar 19817
-- Last mpdate

HosNet Machine VAX/VMS 4.5
-- Target Macine: VAIZIX 2.3

-- Abtract : his package body provides tha necceary intarface
------ --: for reading and writing tha 5M11-C'. CUE.

---- ---- --- -i t z - - - - -

-- Data version author Siatory

--------------- and of Prologue----------------------

with VUUC3-COVESIOU:

package body 10aItr~fnteei

function Coawart It tomn u ~ CCVI BMWURRcod max== WORD);
function Comwert It Is now WORCWV3IU(~IUD, NOWC92RReord);

procedure Put CSR (CSR :In EMv CUR-Record:

22 CMUISEI-87-TR-32

aauia019te~dma 0102101 m WOOD:

seot Vaa ~l"" urn at Regiser.,Address.

Cmxreta3S :- Cemamt _Zt (Cfa3
W~tSAtggm CUZ~atU6,Can U0"md);

ead Put-Can;

function 6.6CmO (Begiatotdiee Am""SSS
Nature NOW Cm6.ceAd" I

COR a VCaRecod;
favb cOR awinom WWr:
COIL Deigned ONMOEDm 313;

for CSR Deigned ne ;t aegIftarAddress;

begin
Current csa :.a UWaiSm A(C2RVnfigned):
CIA :- Ccmwazt It fC=nramCSR): r
retuzn CSR;

and Get CUR;

and S1IV_leqitrDefinitione;*

A.c. Real-Time Clock Manager Package Specification

---------U Ada emedded Systre Project Prologue ---------------

-Unit nae mviClockManager
tap meat 0 ACI

-- Version 1.0
-Author Mark W. Barger

Da 3ta created 17 Mar 1967
L- ast update is Mat 1987

mooBet Machine VRX/VMS 4.5
Target Machin*: VAiXZX 2.3

-- Abstract :This peckage specitfication provides th. necessary
------------- data types, procedures, functions, and exceptions
------------- Lor interfacing to mltiple wllI-c real-time clocks
------------- (0-boa device) via Ada application code. All four =*ose
--- ---- ---- :of the clock's operation are supported in addition to

it. five different internal elock rates. to use thoe
----- ------- matisme oe soot first invoke the Initialize procedure
- -:------ to create a clock device object and got a clock Identifier.

* tu device object can be need by the application to wait
- e-- n:a a device signal from an lnterzat Service Routine: the

*clock Id i sed as a key Lot the temainder of the packag'.
--~~~ - -- ---- cterfause. The Initialization exception is raised if

*the W9ZZ kerel device object canot be created for
* whtever ""Gac. The Clock Not Zitialized exception is

- -------- if a seneified clock 1i LInvalid.
----- o .he ttIme" only airport acter overflow Intempa

ad not Schitt trigger Interrpt. "be counter routines
(StartCouting, Bond Counter , "_cP oating) should only

----- -- ---- :he ueed In ade. made two or Node three; when used In any
- ---- - --- mode, the Invalid Clock Node exception will he raised.

CMUISEI-87-TR-32 23

- Data Verioan ehe xetoxy
- 16 Nor, 67 1.0 Mark W. D"ee Adad Display-F vzopeceUme.

-22 War 01 1.0 Mark W. server Added Invalid clock Mode aroeption.

----- - and of Prologue - ------------------

with VAMUUV89CU:
With CCWDZZW U1qL~w6
With S3UIML

package anh C-loak whosage Is

-- Data types Imported from SYTEM package

subtype ADDUS is SYSZM. ADDRZSS;

-- Data typs Imported from COIWITIOU NAIULING package

subtype CO@_VXZJ9%_rwu Is CMOu~N- AMDLmNG.CM oivazAM-Yz;

-- Data typs Imported from VA=Z&N S&RVICES package

subtype DIVCI TYWl Is VAXIZM SERICES .DZVICR tMl;
subtype WKCOUN'TlRrPZ is VAk22* SERVXCES.=4VCOUTt!PK;
subtype VZC2TCR NUUER TPE Is V)==NSERV1CZS. WC!CULUMuATYPZ;

-- Local Data types

type Clock ID is private;

type Clock Nods Is (Node Zero, Mod.-one, Nods Two. Node-Three);

for Clock-Node use (Node Zewo e~0, Node One -> 1,
Node Iwo C>2, Mode-Three -> 3);

type Clock-Rate is (Stop, AstaelJE, Rate 100MH,
Rate am.,,= Rate 198Z. Rate_100HZ):

for Clock-Rate use (Stop ->0, Hateal)UI C ,
Hate 100KHW - 2, Rate_0H ->M 3,
Rat.* 1H . 4, Hate 100HZ - 5):

procedure Initialize (Clock-Name in STRING;
ClockIdentifier out Clock ID:

Noe in Clock Nods;
Rate in Clock Rats;

Vector Number in VECwtORMUIWERTYPE:
Servioe Routine in ADDRESS;

CU 7Address out AwDRESS:
DevieOject out DEVIC% TYP)

procedure Rea Initializo (Clock Idetifier :in Clock m:;
Node :in Clock Node;
Hate :in Clock Hate)

procedure Display-CAR (Cloak -identifier : In Clock -X);
procedure tuale Interrupt@ (Clock Identifier :in Clock7 XD);
prooedure DisableInterrupt. (ClockIdenutifier in Clock ID);
procedure Genersae Iterrupt. (Clook-Identifier :in Clock ID);
procedure RosetIntervrt.Pa CokIetfe in Clock ID)

procedure HAset Overruns-lag (Clock Idetifer :is Clock in):
procedure SetInterrup Period (Clock Idetifier :In Clock ID:

IPeriod In OW CouteR Type 1;

procedure Start Counting (Clock Identifir : in Clock ID):
procedure Rtead-cojuter (Clock Identifier :in Clock ID:

24 CMIJISEI-87-TR32

aS~ubrOft.tck& out 0VCOUTKftLype;
poeeiure, ftepcea~iag (CloCkZdatifIe In1 CckZ;

*umbe Of-Ticks out UWv CONTRI tpe);

fuatios RZwtovxvaahn~led (ClockIdant ifier In ClockZ) Seturn ROOZZR;
Lunkatc Oent no"e (Clock Identifier :in ClockI) return Clock Mode:
Luatis Ounieck ate (ClockZdentifIer : in ClockmZ) "eturn Clock Rtate;
functics ZateazortyPeriod (Clock Identifier :in ClokZ) return UUW COUN!RA. ype;
Latios m~taz~ptY&O0SG (ClookIdeatifier :in CloakID) return B001KW;
Lunatics Oermus lagc04 (Clock Idetifes in Clock ID) "eturn N001KM;

ZaymlId-Flock Mue M1CU:N
Iaitialiaatiou Raver : alUTION;
Clock mot-7iatjlaxied : CRamiaU;

private

subtype Clock_I _fAnuge Is ATDU2.L rang. 0._31;

type Clock ID Is now Clock IDRang.0;

end E31IlClock- Mager;

A.d. Real-Time Clock Manager Package Body

----------a Ada Embdded Systems Project Prologue ---------------

Wa Uit sone AW1l Cloak Manager package body
Cop 3 sineat I PL

-- Version 1.0
-- Author Mark W. Borger

-Date created 17 Har 1987
-- Lat update

s- oot machine :VAXVS 4.5
-- Target Machine: VAW 2.3

-Abstract :This package body implements the subprograms of Its
------------ :apecification. It maintains a ClockID2 array containing

------- -: the corrsponding clock's CSR address to allow for the
------------ :control of multiple clocks.

------------------- Revision Bistory----------------------------

-- Data Version Athor History
-22 Mar 97 1.0 mark W. Sorger Added data structure to contain

Mode and Rate for each Clock ID.

-------------------- Zed of Prologue----------------------------

package body USIl Clock Manager is

-- Lonal Data types

type Clock Inoruatica Record is record
Rate :Cloak Rte;
Node :Clock node:

ad record;
type Clock Info .Aray Type Is assay (Clock ID) of Clock Infecintic. Record;
Clook-lafo Clockj ZafoArray type, :- (others - I (stop. Mode Rero) 3;

type Clock_ Asray Type to array (Clock ID) of ADDR*88;
Clook-Asray :ClockArray Type (others -D, ADORLUI_fiRO);

Cerrent Clock sumiber :Clock ID : Clock ID' FIRST;

CMU(SEI-87-TR-32 25

Prfooedurv, Initialize (Cldckwm : in m8mm.
cLock Idestifier .cea Clock ID;

No": is clock-made:
noe In Cleck-ate:

Vector gmarq In YECUO mT1Z;
Deamice-moatiag ina D3

CUR Addeas out AMDDESU
bevos Cbjft out DKIZ WP3) is separate;

procedure ftmelaitlaliae (Clock Zdmnifier : I Clock ED:
made: In clock-Mode;
Rate : i Clock-Date) Is separate;

procedure Display CUD (Clock Idetifier :in ClockIXD) Is separate;

procedure Unable-Interrupts (Clock Ideatifier : La ClockE1D) is separate;

procedure DisableInterrupts (Clock-Identif jr :La Clock ID) I& separate;

procedure SetItesrrupt_yeriod (Clock-Ideatifer : . Clock ID;
Varied :In MVlYCOUXKR TYPZ) is separate;

procedure GeerateInterrupts (Clock Identifer Ia Clock ID) is separate;

procedure Dast Interpt hlag (Clock-identifier in Clock ID) is separate;

procedure Reset Overrun-7iag (Clock Identifer in ClockEID) Is separate;

procedure Btart Counting (Clock Idetifier : . Clock ID) is separate;

procedure Dead Counter (ClockIdetifier LaI ClockID;
Number Of-Ticks :out IVCOCN!R TYPE) is separate:

procedure 9topCounting (Clock IdentifiLer :L. Clock ED;
MumhawOfhTickm out IV-COGZR_!'flZ) is sparate;

function Iuterzvupts Enabled (Clock -Identifier :In Clock-Xh)
return MMLIM5 is separate;

function Current Mode (Clock Identifier :in Clock ID)
return Clock Mode is separate;

function Current_-Rate (Clock Identifier inL Clock ID)
return Clock-Rate is separate;

function Interxupt_?eriod (ClockIdntifier in Clock ID)
return MMVC00MZDTYPZ is separate;

function Interrupt Plag . (Clock-Identifier in Clock ID)
return 3001*5 is separate,

function overrun flag ce (Clock-Identifier in Clock ID)
return 3001*55 in separate;

end NInllClock-mbAger;

Initialize procedure
With DIECZ9CZD OMSIU:
with YWANKE UZVICtU; use YARZ5UEKIc3u:
with Laly Register -Definitions; age ml'RegiAsqrter Definitions;

separate (ElVll Clock manager)

procedure Initialize (Clock 3ms : In SIDEDO:
Clock Identifier :out Clock ID;

Node :In Clock-Node;

26 CMU/SEI-87-TR-32

Sate : I Clock Mat41;
Water Pmber : in IUCICB-M M ZTP:

Denviank emtlae : I MSDZOS;
Coimase out AflO*S;

* iev;LCooL :a out DU,1c M)IP Is

Moaum code MO min M TIP:
NMI-am Mdeffis ADM=$;

Timm Davis* MMY10 Am=i 1133(0. 0) :- (others -cl 0):

Lumatieft Costeat It Am.ew I CmCWV3tIXC (Cloak no".. ONIGNED-2);
Re~aftef ConkralIt ism. nw C CCMVZRSIGW (Cloak DAato, VW11 M3);

-Cavato the UMWlI-0 device object and associate with its interrupts the

- Interrupt "i**io Routine.

Create Device (Status Ra3.tuazn-Code.
Device Same - Clock Nanke.
Vectoz: umber ~)Vector Number,
Service Routine ->Service Routine,
DegIeter.a K Wx ca Address,
DevloekrZ&Y -~TimerDevioM.

If COWIZTIC mawLZMuaow..(Ratuirn Code) then
Device Object -Tinker Device (0);
Cloak Identifier :.CurrentCloakNumber;
COIL adrese IMM WlCSR Address;
Cloak Armay (Current,_Clock N1umber) KW411 -CURt Addrss,
Cloak Info (Current-Clock Number) :-Clock -Infaoation - ecord' (Rate. Mods),
Current -Clock-Nmer :- Current_-ClockNmer + Clock -ID (1);

- Initialize clock via CII setting*

Current-CSR :- VM CUR - ecord'(
9o e> ALSZ,
Mode -~Convert It (Node),
Vto -D- Convert -It (Rate).
Others -O FALUR) ;

PutCSR (CurrefttCUP. inOll - SR Addres):
also

rais Initialization Zrror;
end if;

end Initialize:

Re-Initialize procedure
&With VacC" CWRRSIO;

with VA2MMXPERYICZS; one VXVLLKZ IZR:
with Mq _mister Definition*; use XXW RegisterDefinitions:

separate (U1MI Clock ibManger)

procedure PAsInitIallse, (Clack -identifier : io Clock I D;
Nods :In Clock Node;
Rate : i Clock Rate) Is

Carteat-CUR : VXV CUR Record :- Get-CSR(Clock Array (Clockdntifier));

Loatlos Cc -wert it to new UNMC CaIVZDBICN(Cloak Node, 8I0IWXD2);
Lunkatlea Coevert rt is Now u in Cavao(CckRt.WaxaI6-3);

beoon

-- If specified clook's C21t addess Is non-zero (i.e., the clock uziets
-- nd has been initialited) then re-initialise It by clearing the CSR

s- ettings; otherwise &*is* en ezeptiou since the specifited clock has

CMU/SEI-87-TR-32 27

m et beum I~tiali.4 ,MVeWli.

ILE Clakxy CleIzmtf r I SU O then

Cii et _ .-,avv CnR aserd, (go -0 VIM.
so"e .0 comwectIt (ofte).
auto -0 Convest It (Rae).

ether* -6 PALMi).

clok sle(Coc Idntlie) -Clock 1sf tonaood (lat. Mod..):

mine clock not initialized,

and anlalitiftliz.:

DisplaySR procedure
with %=U!IO; sa* 2=iT-10;
with U31%f egister Definitions: a" Ely Pgister Definitions;
with UMCUCMCOUSfllfI0;

separate (mu 21Clock ibmeageri

procedure Display CUR (Clock Identifier :in ClockX) is
Currt t : MW CSR Record :- Get CSR(Clock IzzeY(Clock Identifier));

package flate.Z Is naow EUOWNfA'IONIOX(Clook flate);
package Mo08.10 to nerw KNOSSAIOK I (clock Mode);
pack&ge DOOLXARSX i a w SBI IC(OIA)

fnction Conert-It is new 0UWCM C Z3JSX0M(DM5IQIM2, ClockMode);
function Convert-I Zt no w QwCMCM ConVRBICU(UMUZGWi-. Clock Pat.);

procedure Tomatted itring Put (itt , In flPZUG) La
begin

Put Cstr):
Sot -Col (20);
Put(v, -) "3

end rozoatted fitting Put;

begin

-- If specified clock'sa CUR addroau is nou-sere (i.e., the clock exists
-- and bag been initialized) then display Contents of CSR;
-- otherwise raise an exception since the specified cloak has
-- not boen Initialized properly.

if Clock-Arxey(Clock Identifiet) /- AWomsS-ecR then
FoZmatted Utring Put ("Ci. go"):
UOOLUSIC. Put (CsrrentCUR. go): flew Line:

Vzmttod fitwing Put ("CUR.mode");
Uod. 10.1st (COWVZt NOt (Czeta.oe) Liwno;

Vozttedftringyut (CUR.rate),
Slato-Ia. Put (CoavextIt (Currot_CUR. rat*): NewLine;

FoZmttediRtrinqVt ("CSR. ist owfl);:
50018* IC. Pust (Carteet -Cii. AntOwl) ; MewLine:

fezmttdtig-Pt (-CB.wffEle):
3001853 10. Pt (CwrretCSR. owl flag): xewLine;

lezmttdStAmG Put ("CUR ."at tl "):

VrmattediStrinqlst ("CSR.aitt-) ;
30018*310. Pt (Czrenutcs.aintawt2); flewLine:

Formattod fittingPut ("CURmaixt ac");

28 CMU/SEI-87.TR-532

boom I@. Pat (OXT"rant.mimlteo). slaw-Lise;

WmttedStriaoLvat (0em.dl;

BOOCNOZO.Vat (Caguemi S.stio); enale) M%.: i

Fremttedl~8trgineP1t (-0m.tflawe);

mO0182 10. et (Cuzzeat CSK. .t2geeaeb.Now Use; ie

raisedaoctgat (Caet lto eb")

and Dieplay_015;

Enable-interrupts procedure
with UNVflegiter-Definitiosa; usne WVaegister Dfinitiona;

separate (DeIl Clock maager)

procedure Zaabi. Interrupt. (Clock_Idntifier :in ClockID) is

Current-S :8 SHYCURecord :- Get CSR (Clock Array (Clock Identifier)):

begin

-If inpecified clock'. CSR address to non-zero (i.e.,* the clock suiets
-- and has boom initialized) then enable Interrupts on counter overf low;
-- Otbozwlae ralise ank exoeption since the specified clock has
-- not been initialized properly.

if Clock Array (Clock Identifier) /- ADDARU_3350 than
Current CSR, lot ovf -. 1M;

PuS(Curreot CUs. Clock Arra (Clock Identifier)):
aloe

r aise Clock Not Ini~tiall. sd;
end if;

end Uable 6Interrupts:

DisableInterrupts procedure
with MK"egitoxrDefinitiooa; am*e WYVRsi ster-DeftnitLon&:

""eprate (DevIClock Manager)

procedure Diabie Interrupta (Clock Identifier : in Clock-I=) is

Currett _CS : VV COR Record :- Get CSR (Clock Array (Clock identifier));

begin

-It specified clock's Cit address Is non-sezo (i.e.,* the clock emiats
sa ed bas bee" initialied) then disable Interrupts o counter overf low:
o therwise gameo en exception &Laoe tbe epecified clock baa

-- not been initialized properly.

* ~If Cloak Arrey(Clock Identifier) /- AW3Zai 335 then
Current CI. int ovf :- VALMI
Put Csm(current-CUR, Clock Array (Clock Identif ier));

CMUISEI-87-TRm32 29

wusoa Cloak Nust-Iaitialued;
Ed if;

end Dinehlzatxxttsa:

Setjnterruptyperlod procedure
with Cim CinUUSzc;P
with VZMMfl3RVZCU: a" YAU a mWeVZCB
with Uw9 Agister Vfimitiefta;Us urn. Vaister pefintitioe:

separate (=MliiCloakManager)

procedure Set _Zterrq*_Period (Clock Identifier :in ClockID:
Period :in INYC0?3iR-?TPX) is

Device ?ick. MWY COOM.ER TPZ;
for Device ?icka urn. at (Clo*ck Array (Clock Identifier) + 2);,

begin

-- f specified clock's CSR address Is non-mere (I.., the clock *mists
-- and has been initialized) then set the current value of the clock
-- Interrupt period using two's comaent notation; otherwise rat**
-- an exception since the specified clock has not been Initialized properly.

if Clock Array(Clock Identifier) /-. £flDURUU 33.0 then
MUTE !KGXSTZR((l4iYrflO - Period + 1), DeviceTicks);

else
ra~ise Clock Not Initiali mod;

end if:

end Set InterruptJPeriod;,

GenerateInterrupts procedure
with VMW gqimter Definitions: am* =MW Pegiater Definitions:

separate (UlVIlClockManager)

procedure Gemerate Intorziipts (Clock identifier in ClockX) Is
Current CUR : =YCUR Record :- Get CAR (Clock Array (Clock Idetifier)):

begin

-- It specified clock's CSR address is non-mero (i.e., the clock exists
a- nd has been initialized) then start Internal counter that causes

-- interrupt.: otberisic raise an exception @inos the specifiLed clock has
-- not been initialized properly.

If Clock Array (Clock Identifier) /- ADO3ZUU ZERO then
Current CUR.9 :o- 29m!;
PutCURC(Curreaat_CUR., Clock-Array (Clock Identifier)):

raise Clock Not Initiali mod;
end if:

end Generate Interrupts;

ResetIntemauptfflag procedure
With UlvDegitGZrVfintitiOaa; uMAO ftAY Naiater DfUition.:

separate (MlVII Clock Matnager)

30 CMU/SEI-87-TR.32

~.e~a..Uantl~eu~tlng(Cloak_ Uentifieer is Cloak ID) Is

csvsipa m~i~oa e@tmC.acrrayciock idetifier));

begin

- It Sgie~fled Clok'sCO cadduress in sae-seo (I.e.. the clock "uioa
- mad bme been Laitialised) then clear conter overf low flag to allow
- emtotber iatozr to be generated, otberwise raise ask exception mine
- the specified clock bee not been initialied properly.

If Clock Away (Cloak Ideatifir) /- ADD3RU la them
eawret CS.owf flea - VATUE;

let (~rent UR.Clock Array (Clak Idotifier)):

miss CloakNot TIitialised:
end If;

and Aset-Intorzoptjlag;

ResetOverrunylag procedure
with =1v jRmqistsr Dfinition.; use, IOIVMister DefinitiLone.,

separate (UI~lClock Manager)

procedure Moet Ovrrun rhaq (Clock Identifier :in ClockID) Ls
Carrent CUR IV_CVRReord :- GetCSR(Clock arzay(Clock Identifier));

begin

- If specified clock's CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then clear interrupt overrun flag:
-Otherwiee raise an exception since the specifiLed cloak has
-- not been initialised properly.

if ClockArray (Clock -Identifier) /- ADDORIS LERO then
Current C8R. flag overrun:- VALUR;
Put C88(CuzretCSR, Clock Arway (Clock Identifier));

ele
raise Clock not Initialized;

end If;

end ResetOverrunFlag;

StartCounting procedure
with =UW_Regisar_Dafiitione: une amV RegisterDefinit Lone;

separate (Wll 1Clock Maneger)

prooedure Etart Conting (Clock-Identifier :in Clock ID) Is
Cuzrent _CU : DIV CUR Pecord -- GetCUR (Clock ArrnY(Cloc-k Identifier));

begin

11 If pecified clock's CSR address is mon-u.:. (i.e., the clock exists
a- nd ban been Initialized) then start the cloak's aInternal counter:

- tbarWi. raise an exoeption since the specified cloak has
Snt been initialized properly.

If Cloak _Array (Cloak Identifier) /- AMPUSUR3RO then
If (Cloak Info(Clock Identifirf) .No - I"d Two or e1m.

Cloak Inafo(CloakIdetifier) Node - node Three)
then

CUrrent CUR.go :- IWRM
Fat -CSR (Current _CUR. Clock-Array(Clock Identifier)):

raise Invalid-Clock Mode:

CMU/SEI-87-TR-32 31

and Uf:
also

raise clock Met Initialsed:

ead itaxt obntiag;

Read...Counter procedure
with nr Vlgiter Definition&; Use MW Degister Definitions;

separate, (MSMll_Cloak_-VMnagr)

procedure Sead-Counter (Clock Identifier In ClockI D;
SumherOfTick. out 11W COUWTER TYPE) is

Current CDI WAVCSR Record :- Get CSA (Clock-Aray (ClockIdentifier)):

Device Ticks :W CMFONTIR TYIPZ;
for Device-Ticks a"e at (Clock Array(clock Identifier) + 2);

begin

-- If specified clock'sa CSR address is non-zero, (i.e., the clock exists
-- and has been Initialized) then simulate en, external event to
-- get current value of the clock's* internal counter written to the
B-- W ID/PU T register and then reed that value and return it while

-- the clock continues to run; otherwise raise an exception since the
-- specified clock has not been initialized properly.

if Clock Array(Clock Identifier) /- ADDPZSS ZZRO then
if (Clock Ino (Clock Identifier) .Mode - Mode Two or else

Clock IXnfo (locki-dentifier) .Mode - Mode Three)
then

Current CSR.st2 tat enable :- rALSZ;
Cuzrent7CSRmaint-&t2 :- TRUE;

flitCNK(CurratCI, Clock Array(Clock Identifier));

loop
Current CSR :- Get CBR(Clock Arrsay(ClockIdentifier));
exit "hen Current CURt.st2 flag;:

and loop;

NumberOfTicks :- MAD~ IRISTM (Devi cmTicks);
Current CS.st2 flag :-7rAL32;
Put CSR (Current CSR, Clock Array (Cl ock-Identifier));

else
raise Invalid Clock Mode;

end if;
elso

raise ClockNotinitialized;
end If;

end DadCounter:

StopCounting procedure
With MfIV Register Definitions: use 1W-egi star Debf init ions;

separate (=MlliiClock Matnager)

procedure ftopCounting (Clock Identifier toi Clock m;
*mkber of Ticks :out MlY COUTE TTP9) Is

Current CmR :r CER Record :Ot CUR (Clock Array(Clock Identifier));

Device-Ticks : NWCOUNTER TYPE;
for DeviceTicks use at lClockArrsy(Clock Identifier) + 2):

32 CMU/SEI-87-TR-32

begin

- If specified clock's CSIL addess to non-gemo (i.e.,* the clock exists
- anbd has be". initialised) then mieulate es extexuel event to

*- got aseent, value of the clock Ia Internal eouter written to the
-- 17MVPRZM3 register end then return that value:
oherawise raise an exception since the specified clock has

-- not bean Initialized properly.

If ClockArray (Clockdentifier) /- ADmU Sf0 than
if (ClockInf*(Cl0Ck Identtifier) .MAda - WaDe TWO or 010.

ClockIu~fo(Clock Identifier) .Mode - nodefthree)
then

CurrentCR at2tn eabe
current -CUI.aint nt2 :- TRUE;
Pat CUR (Curcent CSR. Clock-Arrey (Clockdetifier));

loop
Current CSR: - Get CS: (Clock Array (Clock Identi fier));
exit when Current CS.t lg

and loop;

Wumer Of Ticks RZAD RICISIR(Devioe Ticks);
Current CS:.O go FALSE;7
Current -C5R. st2 flag P- ALME
PutCS: (CurrentCS:. Clock Array (Clock identifier)):

else
raise Invalid Clock Mode;

and if;
e18e

raise Clock Not XInitialized;
a and if;

and ftop Counting;

* InterruptsEnabled function
with =#%V Regimar Defintition.; uso WyEVRegisar Definition.;

separate (MlV11 Clock Manager)

function InterruptmEnabled (Clock Idenatifier : in ClockID) return 900LLAS is
CurrentCS : KIEVCRRcord - Geot CSR (ClockArray(Clock Identifier));

begizk

-- f specified clock'. CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then return a DOOLEAN value Indicating
-- whether or not the clock will generate an interrupt when its internal
-- clock overflows; overflow flag; otherwise raise an exception mince
-- the specified clock has not been initialised properly.

it Clock Array (ClockIdet ifier) /- ADDRZSS ZErtO then
return Curent-CS:.Lmt ovf;

raise Clock Pot Initialized;
end if;

and Interrupts~ynabled;

Current-Mode function
with UXCC1_COMRfSIOW;
With W=t agiStor Dfintition.;, Use nfYV ReisfterDefinition.;

separate (UMlv1 Clock Manager)

function CurrentMode (Clock identifier :in Clock XD) return Clock Mode is
CurrentCS : KIEV CSILRecord :- Ge S:(Clock Array (Clock-identif icr));

CMU/SEI-87-TR-32 33

LosComertft s mw UCHIM CMMIN(M1MI-2,Clock Umd")

- aif hs.peefied aldis CO d teem s ure esa (Ilo.. te C "exst

- othewise ssdse a& enompties wisam the specified clock ha.
no et been initilaized psoperly.

if Clock army (Clokjatifier) IcAWIZUN Ifl then
return ovr t(urn Uud)

als Clock Not ZIit~alined;
erod If:

end Current Mode;

CurrentRate function
with UNCHURMKWCCMRSPIOU;
with UWRgster-Definitions; use MM Regi eter-DefLuitioni;

separate (OWllClockMWerC)

function Current-Rat. (Clock Identifier :in Clock-=) returm ClockRate is
Current CUR :W MCaRRecord :-Get CSR (Clock Array (Clock Identif Ler)):

function Convert It inow UICK _COKVR8O(U8IWZD3, Clock-Rate);
begin

-- If specified clock's CSR addlres is non-soe (I.e., the clock exists
-- and bas been initialied) then returz current clock rate;
-- otherwise raie en exception since the specified clock has
-- not been Initialized properly.

if Clock Array (Clock Identifier) /- ADMRZfiS ZZRO then
return; Coftvrt_I t (Cuxrrnt CBR, rate);

ralic Clock Not-mit lalLsed;
end if;

end Current Rate;

InterruptPeriod function
with UNHCE= CO6ZRSXO11;

with VAXZINSEZRVXCZLS; use VWZ5 5ZE&RVIC1J;
With KNY Register Definition.; use MMwRgiter Definition=;

&operate (MVllClockNeniger)

function Interrupt Period (Clock Identifier :in Clock_10) return flyCOWITZ I TYW is
Device Ticks : MV COMMAR vitR

for SeviceTLake u;,e at (ClockArray (Clock Identifiear) + 2);
begin

X- s pecified clock'. CSR address Is son-zero (I.e., the clock exsts
-- and has been initialized) then return current value of the clock
-- intozrmpt period: otherwie reaise an exception since the specified
-- clock hes not been Initielized properly.

It Clock-Array(Clock Identifier) /- ADDA8U gURO then
return READ REGISTER (Devioetlcke):

else
relsc Clock Not Initialized:

end If;

end InterruptPeriod;

34 CMU/SEI-87-TR-32

Intmrpt FeaLOn function
with mq jfaete~fiitefs; seW mfagistat pafinitiose:

eapat. (Umli Cloak Mmeger,

function Zat~zrutfyleg0_ (Clock IdentIfIer :In CloakXD) return DOOZZM is
camtCOU : W CskR Pecord :- Get 081(CloakArray (Clock Idesgtif tar));

begis

f spe ifed clock's C address Is nom-ea (I.*., the clock exits
-- and has bee. Initialized) then return current RO08.ZA value of counter
-- overflow flag; *therviee raie an exoeption since the specified clock
-- nas not been LiitLalzed properly.

if Clock-Array(Clock dentifler) /- ADD3h88 1O then
return Currant-Cl .ovfflaq;eli.
raise Clock Mot Imtialitad;

end if;

end ZtezWr_ FlA On;

Overrn_FlagOn function
with VlRgiaterDefinitioms; use IV li.gieterDefinit Lone:

separate (MVllClock manager)

function Overrun lagOn (clock Identifier : in Clock XD) return 3001.JA is
Curent -Cl :W Ci lecourd :-Get CSR(Clockray(ClockdentifLer)):

begin

-- If specified clock's CII addrs is non-mor (I.e., the clock exists
-- e has bees Initialized) then return current 3001.3W value of overrun
-- flag; therwie rale an exception mna the specified clock
-- b-e not been initialized properly.

If Clock_Array(Clock Ideatifier) /- ADJkZ2 2Ro than
return Current csa. flag-oyerzum:

else
raiee Clock Uot InLtialLsed:

end if;

end Overrulag -On;

A.e. INS Data Types Package Specification

-- I-- 9 O Mmz rE: packs"e Specification

-- I DIT I-- I ozt, Leative globel osetants a"d typos.

---- ---

•Ibis package defines the constate ad global data types
.--I used throughout the ecut.L.. subsyste..

CMU/SEI-87-TR-32 35

L

I MYZII Szeft": -a and. of listing

peas zz 1; ftoi

NSZiin Prority : amaat NURALunz 15;
Maximu in Vae : costant ELTURA. 34 560 000;

M~x=tPeriod Value : contant NUR~AL. 511;
Ulie oomi. &~ ?Lek : ostant NURAL. 2 560:

subtype 9140k an" La SUA tea" 0. .NkaLm ck IValue,
subtnpe Paeziod Zen" Is MAEU.A ram"e 0. .Ibzim Period value; -
subtype fLzoztyNeap. is xagu3X. comge 0. .uazlomrowity;

ad InS Restsa typs:

RVIWNIM2ORY - ----------- ------

A.f. Clock Interrupt Service Routine
with VAlgIg SZKYIC5:
with CaObZMOI-NADLNG:
with INS Date typea;

with SYTEMin; use lYltM.i

procedure Timer InterroptRoutine
(Device Pegistore :in AW3ZBU:

c.. LRegion in out INS -Data _Types. Executive Cmunicat ionRegion;
ISA context in V3XZL SERVICES.XIsa COMT TriaP) is

Raturn -Code, C=XUIOU1MLXNG .C0lD-VAIDET!PE

begin

for Xndaz2 In 1. .110
loop

TeopXnt : - Tempnt + Iadex2:
end loop:

CamRegion. Curzent Tc-umiber :- Comn Aeglon.Cumrnt-TickNumbr + 1:

if Camw_9Abgion.Cuxrnt-tickumber >- Cm Region.UertSchedule Time then

VP.XZflSEEVICZS. BIGUM._DEVICE (Status P RtuXrn Code,
DeviceNmtiber -~0,

ISR ontext .> lRContext)
end if;

end Timer Interrupt Routine:

pwagne UPPRISS ALL:
pregme ZX~PO-ROCZURZ (timer XtArrzwtMout Ina):

A.g. Runtime BIT Package Specification

-1 inzaM maP: Package Specification

-- IaUWA RURROU:
-- I This package implements the Raintime Reilt-Xn Tests
- for the flESt INS oimUlator progran.

36 CMU/SEI-87-TR-32

1" ~a pacage lepimeafta the Mantime muilt-in testsa
za fr the AM8 ZM8 Simulator progrm.

REVSIO Y8W zS2": - send of liating
-- ~~ ,-----------.------------ -- -- - ---------

pram PAM

package Muntiinin SIt

teask M3nime U! Proceor is
eatiy Aztivate; -- called every 1000 moo by the dispatcher

end natumina 3?rooesoor;

procedure Suntime Taos; -- implements the tests

end Runtlam._SIT:

A.h. Runtime BIT Package Body

-- I OZZ MANZ: Untine sI?

MODZ T m IT iS: Package body

Nova=001 PVSPO3I:
-- 2his package isplamenta the Runtime, built-In ?*at*0 -- ~ for the 1.33! 133 simulator program.

-- 100013Z DZaazl!100N:

-I This package implements the Runtime built-In Teots
-I for the *38? INS simulator program.

------ - --------------------------- -------------------
-- I IO HY30 ISTORY: -- see end of listing

---- - - - - - --

pragaft PAM,:

with LoadControl;

package body Runtims 511 is

4.. task body Raaatime DI? irocassor is
begin

loop
accept Activate: -- called every 1000 ease by the dinpatcher
loadControl. Bsny waift (SO);

and loop:
end sntla SI? P oer;

4 procadure Ruatimt-ets Is
begin

mull; -- implements the teats
end WSuntian. tsts:

end Rantime 31?:

- - ---- M-O ITR

CMUISEI-87-TR-32 37

A.i. Motion Simulator Package Specification

-1 WI O in#1Z : Notieeghm-lator

-- I TW1KZ: Package Spacification

-- I IDIII

-- I Tki package implemetn the various motion Simulation
-- alcu.Lations that are the Ooze of the ARS1 EMS

S imuilator program.

------ ---- ------ -------------------------------------
-- N KA D&SCT rI:
-- I this package iplements the various motion aimulation

aelculations that are the core of the AM INS
-- aimulator program.

-- ---- ----------------- --- ------------------------
-- R IzV ;; oM STORY: - ee end of lieting

pragu PAGE;

package Motion Simulator is

procedure Update Attitude-andBeading; -- called by the clock 1ea every 2. S6 so

task Ship Velocity Updater is
entry Activate; -- called by the dispatcher every 40.96 mac
Prague PRIOT (S):

end Ship yelocity Updater:

task Ship Poition Updater is
entry Activate: -- called by the dispatcher every 1300.0 masc
pragna PRZORITY(1):

end Ship ionitionUpdater;

end Notion Simulator:

--- - - - -- RZII ISTORY

A.j. Motion Simulator Package Body

-- I
-- I N10001 MIN: Notion -Simulator

-- I O 5 TYE: Package 2dy

-- N Z D OU
-- 131001. PURPOSI:

-- I this package im1awenat the various motion imulation
-- calculationa that are the core of the AiSTIN
-- tsimulator program.

-- N OID D&SCR PZIXC:

-I tin package implements the various motion simulation
-- I calculations that are the ooze of the liST INS
-- imulatr program.

-- I PJ VZIW 2IISTOI: -- Se end of listing

Prau PAM:;

38 CMUISEI-87-TR-32

aP

with lecad Control;

with Wea Ubeger:.

pakage body MteSamlator is

pfeocedue qpdwte Attitude-ad-eeding io

mall;

task bodly skip Yelocity Updater is

acoept Activate;
Load Control .fusyjft t(40); -- 4 milli&eod

end loop;
and Ship Velocity Updater:

task body Shipjoait ion._gpdater ia

loop
accept Activate;

*Load Ccntxol.XuwyjWait (250): -- 25 nilliseconda
end loop;

end Ship ?osition Updater;

end Motion Simulator;

Ak. Comms Handler Package Specification
package Coma Handler is

procedure Time-Out:

task Attitude Periodic Maage Sender Is
entry Activate;
pragns ?UIOnT(7);

end AttitudePeriodic Meacage _Sender;

task Navigation PeriodcesaeSde is
entry Activate:
pragma PSIOUXTY (4):

end Navigation-Periodic UssageSender;

end Conma Handler;

A.t. Comms Handler Package Body
vith LoadControl;
with Task-Wanager; use Task Manager;

package body Cama Handler is

procedure Time-Out is
begin

null:
and Time-out;

teask body Attitude-Periodic Massage _Sender is
begin

accept Activate;
Load -Cotrol. basy_Wait (100);, -- 10 mllisecond

end loop;
end Attitude Periodic Message Sender:

CMU/SEI-87-TR-32 39

* task body Naigtio aerodo~a4assagepader to

leer
aept &ativat.;
food mtGuol.2ofiYjt (200): -- 20 ai11ieecanm

end lo";
end NswiGetioMjPeriodiR NacageSenior;

end Coum. Nandler;

A.m. Screen Area Handler Package Specification
package Screen ArenaVandler is

task Periodic Statuaflisplay yroceseor is
entry Activate; - called every 2000 eae by the dispatcher

Prague PRIOZjTr(3);
end Periodic statueDieplay_Proceceor:

end Screen Arena Redier;

A.n. Screen Area Handler Package Specification
with LoadControl:
package body Screen Acea-sendier to

task body Periodic Statua biuplay Proceecor is
begin

accept Activate: -- called every 1000 Mesa by the dispatcher
Load -Control.busyjWit (1000): -- 100 millIsecanda

end loop;
end Periodic Statue bieplayiroceseor;

end Screen area Hadier;

A.o. Activation Queue Manager Package Specification

MODULE~2 MN: Activation,_gueuejManager CAQK)

MD ULEa TYPE: Package Specification

M-IIOULE PURPOSE:
Im rplement task activation queue manager.

------ -- -- - - - ------ - - ------- ----- - --------------

- This package provides the neeceary data types,
-I prooedures, aad oaptioma for Lop1emnting a time
-I ordered activation queue. The package only supports
-I ama such queue whose Implawntation details are hide
-I within the package body.

------------------- - --------- -----

-- IauZMi RIaY0NS: -- see end of listing

Prau PAUR:

with Task naager;
with INS beta _Typoe:

package Activation Queue Manager to

40 CMUISEI-87-TR-32

subype Activetiem fretied fla Is 235 Data e . rid ane

sutp lTask 2lTpe s Teask Taae~ek3ype:

type ActivetiOWm Made 2ye Is (Singlelbot. Periodic. Time-out, X"~):

tF. lTask)Ativatioa Racord Is ecr
Task IDla 2 ye

Activation TiesidAtvte eidRne

hAtiwatin Priority Priority-mange;
aeatioajPriocity :Priority-Range:

Activation Mode Activation lUnde lype:
end record:

procedure Znwart Activation Record (Record XD in TaskActivation Record;
iegt ached. 0-lme out Activation TlmeRange);

procedure GetActivation Record (Record ID out task Activation Record;
Moat achedul. lme out Activation TLne Ran9.):

procedure Delete Activation Record (Task ID in eask_IDRlpe)

end Activation Queue Manager;

A.p. Activation Queue Manager Package Body

-- I NODOZZ RAW: ActivationQueue Manager

MO IDULE 1213: Package body

-- Ipiment, task activation queue manager.

--------- - - - --
-- ODULK D&SCaRIem:

T-I his package ampporta the implementation of a tie
-- I ordered task activation queue and its associated

interfaces exported in the package specification.
-j The activation queue Is maintained as a atatic array of
-I activation records (ARw) as defined in the package specificat ion.
-- I The AMA a"e sever moved from their initial poaition in the array and

"m o s pecial array element to reserved for the AR of the
CommuOntications Controller task, which is called when a time-out has

-- epired. The AGN maintaina information regarding the next task to he
-- I scheduled end when to schedule it by performing a linear aceetch of
-- I the array apon each inaezt and fetch operation. whken en AR is
-I returned (i.e.,* taken off the queue) to the Diapatcher, its activation
- mode value is checked by the &Qe: if it represents a periodic teask, a

bo nw activation time is omuted, and the AR gets re-inacated Into the
- queue.

IRMUION 3ITORY: -- "ae end of listing
------- ------------------------------ -------------------

pram PARK;

with leak Manager; wee Task Masager;

package body Aetivet ion Quomeu nager Is

MatztAActivetion _leW ACtivation-limeRange :- Activation-Flime Range' LAST:
Net eask to-Schedule Tak ID lype:
ActivationPecorda arrsy(Tsak_=D type) of TaskActivation Record:

CMU/SEI-87-TR-32 41

-- aneft the specified a" imfemntioa Into the AR fable

pgooeg Inmoest Atatietleeeo" (VeoxkDa is task Activation Smoord:
Neat-Sabodale lime out SAtivetlmiymeang.U) in

begin
Activation menada(Reogi ID.Teak ID) :- Rsoord ID:

if &eaed W.Autivtie im <Next Activation Tim and then
Aoocd ZD.Aftivatioa Node 1- Mo Op the

sestkactivaties T-m - Msd ID.Aatiyatiou fine;
meatt ank, To Schedale -eodIDTakL'

nd If;
Mext Sobodul. Tim - Went Aettivation Time;

end Ineegt Antivatom, Seed:

-- get next AR from the Activation Queue. Re-mchebdule any tasks with
sena activation tize as the on taken off the queue.

procedure Gt_ Activation-Rocord (Recoodtl oat TaskActivationRecord;
Next Schedule Time out ActivationTimeRange) is

begin
Record ID :- Act ivatilon Aecords (MatTakftoSchedtale);

-- f current tank Is periodic, then reompute next activation for
-- task and then se-inst it into the activation queue.

If Activation .eoordn (NeftTank :T Schedule) .Activationnode" Periodic than
Activation imoorda (atTaskTo Schedule) .Activation Time

ActivatieioSeoorda (Next_TankTo .Scbedule) .Activation Time +
Activation Time Range (Activatjo- -Recordn (Nest Tank o _Schedule) .Act ivationPeri od);

and if;

-- Find next task to be scheduled.

Nezt Activation-Timem: Activation Aeoor~dn(Tank ID-YpPI~RST) .Activation Tine;
Mest Tak To schedule :- ankID Type' VIST:

for Indes InTakI pe OCTnkITyeVIT).TkID ye'LT
loop

if Activation Nacoordn(IndAx) .Activation Time < Next-Activation Time and then
ActivatiLon-Secords (Indim) Act ivat ion-Node /- NoOp then

*etActivation Time :-Activation Rebcorda (Index). Activation Time:
Weft Task To Schedule :- Idex;

end if,
end loop;

Next Schedule Tim :- NXat Activation Time;

end Get-Activation Reco*rd;

-- Mark ALR asociaed with Tank ID as not available for scheduling.
-- Its slat will sont likely be used at a later date (e.g., timeout.).

procedure Delete Activation Record (Tank ID in Tank _ID _Type) is
begin

Activation 3.eoordn (Tank _XD) .Activation Node : op
end DeleteActivation-Secord;-

end Activation Queue Manager:

---------- IZUVISOM HISTORY -- - - - -

42 CMU/SEI-87-TR-32

A.q. Task Manager Package Specification

-1 mom aw: ftak Manager

-- I IUZ Was3: Package Specifiation

IWBPURPOSZ:
-I Ui package provides an Interface to initialize the task activation
-I queen and stasc the dispatcher of the AEM IRE simulator program.

-- 2LTiA package provides h eesrypoeue
-I to initialize the task activation queue. start the teask dispatcher,
-- neabloIdisable periodic tasks, and support time-outs for base
-I level tack.

--IAZ(HIza STORY: -- see end of listing

with INS vata Tjjf.;

package Tack Manager is

-- Imported data types

subtype Activation Tine Range is INS-Data Typ*a. TickRange:
subtype Activation-Period Rage is IVS DwtaTypealeariod_RAnget;

type Tack ID' Type Is
Ship VelocityUpdater,
AttitudePeriodic N Mssagelander.

Periodiol-tatuDiplay-roceeoor,
antime ZZ~rocomeor,

Ghip P~aition Updter,
Co ime _Controller

subtype Pori odic-Tak ID Type is akIDTp rang.
chip VelocityUpdater. Ship Poeition Updater;

aubtype TimeoutTackXID Type is TackID Type range
Com._Controller. Commi. Controller:

procedure initialixe Activation Queue;

procedure Activate Dispatcher;

function TackI._Snabled (Tak I:D in PeriodicTaskID .Type) return ROOLAN;

procedure wabi._Tak (Tack ID in Periodic TaskXRD Type);

procedure Dicable Tack (Task ID in Periodic Tuak ID Type):

proceure RequetTime Out (Task ID in Timeout Tack ID -Type:
2ine-Period In Activation Pariod Range);

*procedure Cancel TimOuat (Tack ID ftimout Tack ID _Type):

Dimpetc&r Activation Erzor : =CTIGN:

and fTck Manager;

------------- O H11 ITORY

CMU/SE1487-TR-32 43

IA

A.r. Task Manager Package Body

M- = HM: Hack-Kanager

-- I W WITz S: leakage body

-- pleamet a periodic task dispatcher.

-------- -- -- -- ------- --------- --------- - --------------

-I This package body Imlmmota a task dispatcher
-I that gets and re-Inserts tack activation "eCords

f rom an" onto the activation queue, the dispatcher
wa mtts for signals from a real-tine clock that is

-I generating Interrupt& every 2.5 mE illieconds.

-- SVISIOE HISt2rY: -- 00. end of listing

pragmaPAe

with RuntimeSIT:
with Cm. H-andler;
with Motion Sinulator:
with XWll_ Clockmanagar;
with Screen _AreaHandler;
with Activation_Quue_Manager;

with SYSTEM: use SYSTE;

package body Tack Manager is

package 28 renames Runtime_31?;
package CON reanes ComaHandler;
package MOB renames Motion Siulatoz:
package MEN renammecreAeaHdlr
package AOM rename Activatio_Queue Managr:

-- Imported Data Type*

subtype Clockm XD IVIIClockManager. Clock ID:
eubtype DEViC TYPE is KWll Clock Manager.DZVXCE TYPZ;
eubtype nUWCOF=MTZATPE is Ill_ClockManager. N4V COONTR TrPX;

type teak-fStatetype is (Disabled, rabled);

PeriodicTeask-ttate : array (Periodic_Teak_ID _type) of leek state Type:-
Ship VelocityVpdter ->Enabled,

-- Attitude Periodic Maccage leonder -Disabled,
-- aigaionPeridicMaceg. endr ~Dicebled,

Attitude Periodic MaccageSader ZmEabled,
Navigation PeriodicMaccage lenoder -0 Enabled,
periodic Status Di eplay Proceceor -> Enabled.
xuatime it? proecefior D. Enabled,
ShIp ?oaitIon Ppdater -> Enabled)

ClokIi. W G LZOW-,04ORD;
Corn ReionAddeae SDS6SS

ScheduleAt-TickUmber Activation-tine-gane
Activation Time-Range' lAST:

- local Subprograme and tasks

procedur update at Scbedule Tine is separate:

function Current tick Numbar return Activation time Range is separate.

44 CMWISEI.87-TR-32

ptooodure, Amtiwate Tank (Tashk-Z in La ak ID Type

Miamed-PedLiam, out iOOINAW);

prooedure ftmwmvt ask (TankZD Ln Tiasooft Tank ID Typt);

task Diestaber is
owtz Activate (Clock Identifies in Cloak XD:

Cloak Device ID in DmVi-_TTz):

end Dinpetaher:

task body Dinpetaber is separate:

-- Uzported Subprograms

procedure Initialize ActivatLongmen. is separate:

procedure Activate Dispetcher is separate;

-- to the specified task enablod?

function Tak Is Inabled (TakID :in Psziodic Tak ID _Type)
return 300lZAN Ls

begin
return Pariodic Tek State (TakID) - Enabled;

end Tak Ta Enabled:

-- 9nable the specified task.

procedure Enable Tak (Took -ID in PeriodicTank__ID Type) ia
begin

Periodic Tak State (Tank TO) - abled;
end Efnable Tak:;

D- isable the specifiLed task.

procedure DiabieTak (Tak TO in Periodic Tak ID -Type) in
begin

Periodic Task State (Tak ID) -Disbled;

end Diaabl_ Task:,

-- Activate the specified teask.

procedure Activate Tak (Tak= in Task ID iType;
Nissed-Deadline :out SOOLLAX) is

begin
Missed Deadline :- rALSE;
If Tank_Xa_EAbied (Tank ID) then

coa Tank ID is
vhen ShipVelocityDpdwter -

select
UM. Ship Vel.ocity tlpdater. Act Ivate;

&Is*
Miacwed Deadline :- TmZ:

end welect:

when Attitude Periodic NMcag. lender -0
select

CW.Attitude-Feriodic Mossagelengder.Activate;
alas
Missed Deadline :- TEEM

cad select.

when Nlavigation_ Periodic NMagee lnder -

select

CMUISEI-87-TR-32 45

MissedDeadline :-TW:
end mmles;

%*An periodiS-tstue Dicplayl Proceceor -

SGf.aiodic Statua-Dieplaylroaeoor .Pktiate;

miss"Dbeadline :- TIM;
end elect:

wben autim bIxTPzoaaoz->
select

V"3. RnntimmNITProeso. Activate;

missedDeadline :- T3D1:
and select,

when ShipPosition Updater -
select

boo. Ship Pocition _Updater.Aectivate;

missed Deadline aTDK;
end select;

when others -
null;

end case;

else
null;

end if;

and Activate-Task;

-- Time Out the specified task.

procedure TlineOut Tack (Tak : in Timetout_Tack_D_Type) is

begin
Cat.Time Out:

end Time-out Tack;

procedure Requect Time Out (Tmck ID :in TimeoutTaskIDType;

Timm-Period in ActivationPeriod PRange) is
NeltTim: Activation TimRange : - RATURAL'rnesT;

begin

AGE. Ineert Activation I Record(
(Task ii). ActivationTim_ Rmnge (Time -Period),
ActivWation Timm Rang.(iePro)ZCretTc~Ehr
10, 10, KON.Time Out), Schedule At Tick Wusbar);

end Requeet _Time_Out;

procedure Cancel Time Out (Task ID : TimwoutTackIDType) is
begin
AQW. Delete Activation Record (Task ID):

end Cancelime Out;-

end Task Manager;

----- - -- - - - - R SION KISTOAT

-- I

Load Control Package Specification
with OillClock manager:

46 CMU(SEI-B7-TR-32

package Zook Control Is

subtype Clock-10 is UW~lClckmIaager.ClockmI;

Procedur Zitialie. (Cloak Idetitier :in Clock-ID);

procedur Deed_-LOadVator:

Procedure, Omy ait (?imbm Period :in PoUZTIV);

ad LoadCOetrol;

Load Control Package Body
with Tart_20;

package body Load Control is

type Load Factor Percentage is delta 0. 05 range 0. 0. .10. 0;

My Clock ID :Clock ID:
Load-Vector LoadVctorPercentage 1.0o;
Calibration constant LoadVctorPeroent age :- 0.75;
Factor :LoadVctorPercentage;
TOUP DOOLIAX;

package LoadVector_20 Is new Taxt 20. Fixed 20(Load Factor Percentage)*

procedure initialize (Clock Identifier :in Clock ID) is
begin

My ClockID :-Clock-Identifier:
and initialize;

-- Open external Factor file on host; read current value; close file

procedure Read Load-Vector in
Factor rile Name :consant TRING "-25: :pa: (borgerl load-factor. inp-;
Vactozr Vle- : TextI0.rILI VVPZ;

goo Text 20;
begin
Open(Vactor rile, in Vile, Vector Vile MmaW);
Load Factor i0.Get (Factor Vile. Load VeFctor);
Vector :- Load factor Percentage Caelibration * Load Factor);
Clog. (Factor File);

end DeadLoadFactor;

procedure buny WNait (Tixm Period :in POSITIVI) ia
begin

for Index In 1..IM'flR(Tim-Period * Vector)
loop

om :-XWll Clock kanaer.2nterpt FlagOn (My_Clock_20);
end loop;

end Bsyaylt;

end Load Control;

Activate Dispatcher procedure
with TCCT 20;
with 1.od Control:
with Timer InterruptjDoutine;

eparate (Tak banager)

procedure Activate Diapatcher ia
MyClockNne constant STRING :- M1Vl;
MyClock I D :Clock ID;
My_ Clock Device DZVIZ ?"PI;
CADAddreee ADDDZsUs:
perijod X W COOMTZ3D TYPE : AS CO K ?TP(2_540);

CMU/SEI-87-TR-32 4i

a" 9%3 Z0. ZESeDta Types. SIMI Cloak Manager;
begin

- Zaitialmes the clock to operate in Mode So at a laws cat.
- 2be Interrapt Service Routine is TUnar Ztameuptautia.

X&it 1.1 e (Cloak xm.s -0 My Cloclk Mam.
Clock Xdetifier -o- N_lock_D

Rate .0 Rate 1I2,
Vaster Numbr so 1,
Service Routine -0 Timer Interrupt Routn'ADDkZSS.
CMR Address so CJR Address,

Cloak Priority .0 Clock IlL.
Caminication RegionSize -D Uzecutzive Camnication -Region' sizE,

Cmunim~ton Region Address -D Com ReagioanAddress,
Device Object U yClockDevice)

-- Update nert schedule time in comnication region.
-- Start current tick number at 0 in communication region.

declare
Corn Reogion INS_5Dats Types. .zecutiveCosmmicatio_ Region;

for Cam Region use at Cam_ Region Address;
begin

Cam Region. CurrntTickumiber 0;
Casm Region. Next Schedule Time ScheduleAtTickUmekber:

end:

-- Properly initialize load control

Load Control .Initialis (My_ Clock XV):
lodControl. Read Lo3ad Veactor:

-- Enable clock overflow signals (interrupts)

Rnable Interrupt. (M_lackID);

-- Set interrupt time period to be 2560 ticks (2.56 milliseconds)

Set InterruptPeriod (NyClockI _D, Period);

-- Start Dispatcher task

Diapmeer.Activate (My_ Clock ID, My_ Clock Device);

-- Start generating periodic interrupts

Genrate-xnterrupt. Oey-Flock-ID3:

eaception
When Initialisation ror -

Put_Line ("ro~r during clock initialization.*);
raise DisatcherActivationZrror;

when Clock not Initialized
Put Line(IavaliUd clock Identifier.-).
raise Diapetcher .ActivationError:

when others -*
PutIZdne("Vaexpected exception raised beck to Diapstcher _Activate Dispatcher.");
raise Diapetcbezr ActivationERcror;

end Activate Dispatcher.

Initialize Activation Queue procedure

48 CMU/SEI-87-TR-32

Aeparat e fek~aards eotn

pweoedof AMi.aia lookaie Queueato Sioo

(Skip Velocity-updater, 1s, is. S. S. *w.reriedic),
(Attitude feciodicDee4 eSed 24. 24, 7. 7. AQW~feriodic),
(avqmtie. PeriodicpomeeegeSeeder. 384. 384, 4. 4, WE.PerIodic),
(Pwedic Statue DimplayProcemeor, 390, 290, 3, 3, AM. Periodic).
(smntime lrT Pzecmaeor, 291, 391. 2. 2, AhW.Periodic),

(Sht~eiticndater. S0M. 500. 1. 1, AiM.Pariodic),
*(Came l Comtroller, 0, 0, 10, 10, hLMoWcp))

begini

for Index in TookZRType
loop

ACK. Zaert Activat ion Secord (Acti..tion Secosrda(Index).

end loop:

end InitialisoActivationQueue:

Dispatcher task
with XKWllClockManagr; use XV42 Clock Manager;
with VA2UA 35WlC98:
with Test_x10:

:Operate (TaskManager)

task body Dispatcher is
My Clock_20 Clock ID:
My_ ClockDevic._ID DEVICS TYPg;
CurrentLA TaskActivationPecord;
Task Minceod Deadline, UOOLEM;

begin

-- Receive infoxeation needed for interfacing with the real-time clock

accept Activate (Clock ID in Clock ID;
Clock DeviceW inIDC-TP)d

My_lockID : Clock ID;
My Clock-Device_ID :- ClockDeviceID;

end Activate;

-- Ioop and dispetch a now tack for each clock Interrupt

loop

-- Wait for a signal device (kernel servica) call from the
IL- Timor Interrupt Routinc and cmet interrupt flag to allow

-- more interrupts to be generated.

YLINZARVU MZ.IWXAMT (Valuel -K y Clock Dcvi cc ID):
sset InterrUptVlag(MyClockID):
Tick iumber :- Tick 3tmber + 1,

If hTknumer >- schedule At-Tick Number then

-- Get next activation record (whoe, took in to be scheduled) from
-- Activation Queue and take the appropriate action.

Get Activatice Pecord (Current A, Scedule Atftick_10voter);

ease Current AA.Activatlen Node io

4 when Periodic I Single-Shot ..0
Act ivate Tack (Current LA Tak D. Task Miceed Deadline):
if Tak-Missed Deadline then

Text 10. Put (Tack ID .ype' DRM3 (Current-Aft. TakXD) A

CMUISEI-TR-32 49

TextZO.?.t.Ime(ick 0: S£ZTG'fl=(ickuwber));
end ir;

wbas Tut s.0

When *them
aull;

and cme.;
ead If:

ad loop;

-- Stop clock operation

UOImnitilI.. Ow-CockhXD. lg"deZero. stop);

end Dispatcher;

A.s. Main Program
with Tak Manager;

procedure maS is
begin

Yah~Manager. Initialize Aetiytio& Queue;
Yah Manaer Actiwate-Disaetcher;

end INS;

50 CMUISEI-87-TR-32

-UNLIMITED, iiNrA1rE7Fn
gaCURnTY CLASIFCATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
to. RePORT SECURITY CLASSIF ICATION 1b,. RESTRICTIVE MARIKINGS

UNCLASSIFIED NONE
2g. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

tIN/A APPROVED FOR PUBLIC RELEASE

i 11. OE CLASS#F SCAT ION/OOWN GRAGING SCHEDULE DISTRI BUTION UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S(5 MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-87-TR-32 ESD-TR-87- 195

6., NAME OF PERFORM6ING ORGANIZATION &5b. OFFICE SYMBOL 7.. NAME OF MONITORING ORGANIZATION
j (Ifo caeble?

SOFTWARE ENGINEERING INSTITUTEI SET SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City. State and ZIP CodeI 7b. ADDRESS (City. State and ZIP Code)

CARNEGIE MELLON UNIVERSITY ESD/XRSl
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

@a. NAME OF FUNOING/SPONSORING &ba. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANI1ZATION 11fapplicable)

SEI JOINT PROGRAM OFFICE JSEI JPO F1962885CO003

BC. ADDRESS lCity. State and ZIP Code) 10 SOURCE OF FUNDING NOS.

CRNGEMLOUNVRIYPROGRAM PROJECT TASK WORK UNIT

SOFTWARE ENGINEERING INSTITUTE JPOELMNNO N.N.No

PTTTSRURGcH. PA 15213 N/A N/A N/A

RI ETATON:PROGRA11ING A REAL-IME PERIODIC TASK DISPATCHER USING
wAXELN; ABA 1.1

12. PERSONAL AUTHOR(S)

MARK W. BORGER
13c, TYPE OF REPORT t3b. TIME COVERED 14. DATE OF REPORT (Yr. Mo.. Day) 15. PAGE COUNT

FINAL IFROM _ TO__DECTOBER_1987

16. SUPPLEMENTARY NOTATION

17. COSATI CODES I18. SUBJECT TERMS (Continu~e On reeerse ,(necessar-. an~d identify by block number)

FIELD GROUP sue. GR.

19. ABSTRACT (COnle"&e on ,teese if neceaa and adenef) !,> block -m.'be,

Abstract. The purpose of this paper is to provide the reader with some technical
information and observations, Ada source code, and measurement results based on
experimentation with respect to developing a real-time periodic task dispatcher in Ada.
The results presented here are specific to a giVAX-llNVAXELN 2.3 target system, the
VAXELN 1.1 Ada compiler, and a KWVV1 1-C programmable real-time clock. Specifi-
cally, these results provide answers to the question: How can one achieve the effect of
scheduling a set of periodic Ada tasks when the runtime frequency of some of the
individual tasks is less than the clock cycle frequency supported by an Ada runtime,
implementation?

20. OISTRIBUTION/AVAiLABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED rLSAME AS RPT. 0 DTIC USERS X3 UNCLASSIFIED, UNLIMITED

22. NAME OF RESPONSIBLE INDVIDUAL 22t TELEPHONE NUMBER 22t OFFICE SYMBOL

VARL. SIGLER 7873 F P

DD FORM 1473,83 APR EDITION OF: I AN 73 til)IISOLE IE UNLIMITED, UNCLASSIFIII)
SECURTyCASSIFCA71-'1f .S A

